Answer:
A<u> covalent bond</u> will hold them together.
Explanation:
The two bromine atoms will share electrons to build a stronger bond and have a full valence outer shell (which makes them stable).
Hope this helps!
Answer:
B. CH3Br
Explanation:
Dipole -Dipole interactions take place in polar molecules.
CH3Br exhibits dipole -dipole forces as its strongest attraction between molecules because it is a polar molecule due to the slightly negative dipole present on the Br molecule.
While O2 is a nonpolar molecule due to its linear structure, CCl4 has zero resultant dipole moment, Helium is non-polar and BrCH2CH2OH is a non polar compound having net dipole moment is zero.
Hence, the correct option is B. CH3Br.
Answer:
C). The Bohr-Rutherford model
Explanation:
The 'Bohr-Rutherford model' of the atom failed to elaborate on the attraction between some substances. It essentially targeted hydrogen atoms and failed to explain its stability across multi-electrons. The nature and processes of the chemical reactions remained unillustrated and thus, this is the key drawback of this model. Thus, <u>option C</u> is the correct answer.
Answer:
8.194 Mev per nucleon
Explanation:
Mass of Barium = 135.905 amu
number of proton = 56, number of neutron = 80
Md = (Mp + Mn) - Mb Mp is the mass of proton, Mn is the mass of neutron, Mb is the mass of barium and Md is the mass defect
Mn = 1.00867 amu Mp = 1.00728 amu
Md = ( 56 ( 1.00728) + 80 ( 1.00867) = 137.1013 - 135.905 =1.1963 amu
Md = 1.1963 × 1 ÷ ( 6.02214 × 10 ²⁶ amu ) = 1.9865 × 10 ⁻²⁷ kg
Energy = mc² = 1.9865 × 10 ⁻²⁷ kg × (2.99792 × 10 ⁸ m/s)²
E= 1.78537 × 10⁻¹⁰ J
to convert to Mev
1.78537 × 10⁻¹⁰ × 6241457006000 = 1114.33 Mev
binding energy per nucleon = 1114.33 / 136 =8.194 Mev per nucleon
3. The height of the graduated cylinder when measuring the volume of co2 (g) produced is adjusted to equalize the pressure in the graduated cylinder with the atmospheric pressure.
We discovered that when the water level within the graduated cylinder is higher than the water level outside, the gases inside the graduated cylinder have a lower pressure than the atmospheric pressure. It would then be possible to equalize pressure by changing the graduated cylinder's water level to match the water level outside.
Therefore last option or 3rd option is the correct choice.
For more questions like Cylinder click the link below:
brainly.com/question/14085192
#SPJ4