Explanation:
The partial pressure of an individual gas is equal to the total pressure of the mixture multiplied by the mole fraction of the gas.
Total pressure = 2atm
Mole Fraction = number of moles / total number of moles
Neon
Mole Fraction = 4.46 / 7.35 = 0.607
Partial Pressure = 0.607 * 2 = 1.214 atm
Argon
Mole Fraction = 0.74 / 7.35 = 0.101
Partial Pressure = 0.101 * 2 = 0.202 atm
Xenon
Mole Fraction = 2.15 / 7.35 = 0.293
Partial Pressure = 0.293 * 2 = 0.586 atm
Answer:
1) Maximun ammount of nitrogen gas: 
2) Limiting reagent: 
3) Ammount of excess reagent: 
Explanation:
<u>The reaction </u>

Moles of nitrogen monoxide
Molecular weight: 


Moles of hydrogen
Molecular weight: 


Mol rate of H2 and NO is 1:1 => hydrogen gas is in excess
1) <u>Maximun ammount of nitrogen gas</u> => when all NO reacted


2) <u>Limiting reagent</u>:
3) <u>Ammount of excess reagent</u>:


...a metal atom will *lose* electrons to form a *positive* cation and a nonmetal atom will *accept* electrons to form an *negative* anion.
Answer:
1. 0.02 M
2. 0.01 M
3. 4×10⁻⁶
Explanation:
We know that V₁S₁ = V₂S₂
1.
Concentration of HCl = 0.05 M
end point comes at = 10 ml
So, concentration of OH⁻(aq) = [OH⁻(aq)] ⇒ (0.05 × 10) ÷ 25 ⇒ 0.02 M
2.
2mol of OH⁻(aq) ≡ 1 mole of Ca²⁺(aq)
[Ca²⁺] = 0.02 ÷ 2 = 0.01 M
3.
= [Ca²⁺(aq)] [OH⁻(aq)]²
Ca(OH)₂ (aq) ⇄ Ca²⁺ (aq) + 2OH⁻ (aq)
= [0.01 × (0.02)²] = 4×10⁻⁶
4.
If reaction is exothermic which means heat energy will get evolved as a result temperature of the reaction media will get increased during the course of the reaction. If temperature is externally increased, the reaction will go backward to accumulate extra heat energy.
5.
value describes the solubility of a particular ionic compound. The higher the
value, the higher the Solubility will be.
6.
This may be due to uncommon ion effect. The process of other ions (K⁺ or Na⁺) may increase the solubility
NH3 +HCl ----> NH4Cl
moles of HCl used = (0.8 x 17.4) /1000= 0.0139 moles
by use of reacting ratio between HCl to NH4Cl which is 1:1 therefore the moles of NH4Cl is also = 0.0139 moles
molar concentration = moles /volume in liters
molar concentration is therefore= (0.0139/5) x1000 = 2.7 M