The molecular weight of water is <span>18.01528 g/mol.
So in 2.92 grams there are 2.92/</span>18.01528 = 0.1621 mol of particles.
1 mol contains 6,02214 × 10^<span>23 particles by definition.
So the nr of H2O molecules is </span>0.1621 * 6,02214 × 10^23 = 0,9761 × 10^23.
Every molecule has 2 H atoms, so you have to double that.
2* 0,9761 × 10^23 = 1.952 × 10^23.
Elements with three p-electrons....
That would be N, P, As, Sb, and Bi -- elements in group 15
For example, energy diagram showing "empty" orbitals up through the 3p.
.....3p __ __ __
3s __
.....2p __ __ __
2s __
1s __
Energy diagram of phosphorous showing three unpaired electrons in 3p-sublevel
.....3p ↑_ ↑_ ↑_
3s ↑↓
.....2p ↑↓ ↑↓ ↑↓
2s ↑↓
1s ↑↓
According to Hund's rule, the electrons singly occupy the p-orbitals, and all have the same spin.
Answer:
D. 77.0%
Explanation:
% yield = actual yield/theoretical yield x 100%
% yield = 1.57 g / 2.04 g x 100%
% yield = 76.96 (round up)
The answer is 100 m/s = 223.694. %100(not part of question)
Answer:
0.13 M
Explanation:
The reaction equation is;
NaOH(aq) + KHC8H4O4(aq) ------> KNaC8H4O4(aq) + H2O(l)
Molar mass of KHP = 204.22 g/mol
Amount of KHP= mass/ molar mass = 0.3365 g/204.22 g/mol = 1.65 × 10^-3 moles
n= CV
Where;
C= concentration
V= volume in dm^3
n= number of moles
C= n/V = 1.65 × 10^-3 moles × 1000/250 = 6.6 × 10^-3 M
If 1 mole of KHP reacts with 1 mole of NaOH
1.65 × 10^-3 moles of KHP will react with 1.65 × 10^-3 moles of NaOH
From
n= CV
We have that only 12.44 ml of NaOH reacted
C= n/V = 1.65 × 10^-3 moles × 1000/12.44
C= 0.13 M
At the equivalence point, the KHP solution turned light pink.