The structure of the alkyl bromides used in a malonic ester synthesis of ethyl 2-methyl-4-pentenoate.
Ethyl 2-methyl-4-pentenoate by Malonic ester synthesis.
The alkylation of diethyl malonate or a related ester of malonic acid at the carbon alpha (immediately next) to both carbonyl groups, followed by conversion to a substituted acetic acid, characterizes the chemical reaction known as the malonic ester synthesis.
As a result, it is evident from the structure of ethyl 2-methyl-4-pentenoate that ethyl and methyl bromides are the alkyl bromides employed.
To learn more about Malonic ester synthesis refer here:
brainly.com/question/17237043
#SPJ4
Answer:
synthesis
Explanation:
I believe answer is d a synthesis reaction
Ok the answers to the hole .doc is
1. Neutrons, Protons, and Electrons
2. N<span>ucleus
3. N</span>eutrons and Protons
4. Electrons
5. Because they represent different things (I would put this in your own words)
Answer:
Neutral nucleophile are: H2O, CH3OH, NH3, RNH2, R2NH, R3N, RCOOH, RSH and PR3. The products by nucleophilic substitution are diverse depending on the different nucleophiles, obtaining alcohol, eter, amines, ester and tioeter considering only the nucleophiles with a hydrogen available.
Explanation:
Please see the images attached.
Nucleophilic subtitution with water occurs under Sn1 mechanism. That's it because water as nucleophile is so weak. With the other neutral nucleophiles, the reaction occur under Sn2 mechanism.
RSH + CH3I -----> RSCH3 + HI
A 10.0g
ok hope this helps