Answer:
speaker64
--------
34x
Explanation:
64-34
x
speaker
4
2
4
788
- circuit
voltage
100000
x.34
Sorry but you have no picture shown
Answer:

Explanation:
The torque applied by a force can be calculated as

where
F is the magnitude of the force
d is the length of the arm
is the angle between the direction of the force and the arm
In this problem, we have
F = 15 N
d = 2.0 m

Substituting into the equation, we find

Answer:
ΔTmin = 3.72 °C
Explanation:
With a 16-bit ADC, you get a resolution of
steps. This means that the ADC will divide the maximum 10V input into 65536 steps:
ΔVmin = 10V / 65536 = 152.59μV
Using the thermocouple sensitiviy we can calculate the smallest temperature change that 152.59μV represents on the ADC:

They all stay the same regardless
Answer:
=0.855V
Explanation:
The induced voltage can be calculated using below expression
E =B x dA/dt
Where dA/dt = area
B= magnetic field = 6.90×10-5 T.
We were given speed of 885 km/h but we will need to convert to m/s for consistency of unit
speed = 885 km/h
speed = 885 x 10^3 m/hr
speed = 885 x 10^3/60 x60 m/s
speed = 245.8 m/s
If The aircraft wing sweep out" an area
at t= 50.4seconds then we have;
dA/dt = 50.4 x 245.8
= 123388.32m^2/s
Then from the expression above
E =B x dA/dt substitute the values of each parameters, we have
E = 6.90 x 10^-5 x 12388.32 V
E =0.855V
Hence, the average induced voltage between the tips of the wings is =0.855V