Answer:
resonance
Explanation:
The particles of substance B will cause the particle of substance A to vibrate at the same frequency
The major shortcoming of Rutherford's model was that it was incomplete. It did not explain how the atom's negatively charged electrons are distrubuted in the space surronding its positively charged nucleus. A form of energy that exhibits wavelike behavior as it travels through space
Answer:
a)Amplitude ,A = 2 mm
b)f=95.49 Hz
c)V= 30 m/s ( + x direction )
d) λ = 0.31 m
e)Umax= 1.2 m/s
Explanation:
Given that
![y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=y%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
As we know that standard form of wave equation given as

A= Amplitude
ω=Frequency (rad /s)
t=Time
Φ = Phase difference
![y=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=y%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
So from above equation we can say that
Amplitude ,A = 2 mm
Frequency ,ω= 600 rad/s (2πf=ω)
ω= 2πf
f= ω /2π
f= 300/π = 95.49 Hz
K= 20 rad/m
So velocity,V
V= ω /K
V= 600 /20 = 30 m/s ( + x direction )
V = f λ
30 = 95.49 x λ
λ = 0.31 m
We know that speed is the rate of displacement

![U=2\ mm\ sin[(20m^{-1})x-(600s^{-1})t]](https://tex.z-dn.net/?f=U%3D2%5C%20mm%5C%20sin%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D)
![U=1200\ cos[(20m^{-1})x-(600s^{-1})t]\ mm/s](https://tex.z-dn.net/?f=U%3D1200%5C%20cos%5B%2820m%5E%7B-1%7D%29x-%28600s%5E%7B-1%7D%29t%5D%5C%20mm%2Fs)
The maximum velocity
Umax = 1200 mm/s
Umax= 1.2 m/s
Answer:

vector with direction equal to the axis X.
Explanation:
We use the Gauss Law and the superposition law in order to solve this problem.
<u>Superposition Law:</u> the Total Electric field is the sum of the electric field of the first infinite sheet and the Electric field of the second infinite sheet:

<u>Thanks Gauss Law</u> we know that the electric field of a infinite sheet with density of charge σ is:

Then:

This electric field has a direction in the axis perpendicular to the sheets, that means it has the same direction as the axis X.
The correct answer is B. Calcite
Explanation:
Mohs hardness scale indicates the hardness of minerals using a scale from 1 to 10 as well as defining the objects or tools that can be used to scratch the minerals. These two features of minerals are shown in the table of the image. About this, it is shown gypsum and talc can be scratched by just a fingernail, considering minerals with a hardness of 2.5 or below can be scratched by a fingernail. In the case of calcite that has a hardness of 3, this cannot be scratched by a fingernail, but it can be scratched by a penny, which works for minerals with a hardness of 3.5 or below. Thus, the correct answer is Calcite.