Let F1=Force exerted by the brother (+F1)
F1= Force exerted by the sister (-F2)
Fnet=(+F1) + (-F2)
Fnet= (+F1) + (-F2)
Fnet=F1 - F2
Fnet= (+3N)+(-5N)
Fnet= -2N
-F
towards the sister (-F) (greater force applied)
Answer:
The solution to the question above is explained below:
Explanation:
For which solid is the lumped system analysis more likely to be applicable?
<u>Answer</u>
The lumped system analysis is more likely to be applicable for the body cooled naturally.
<em>Question :Why?</em>
<u>Answer</u>
Biot number is proportional to the convection heat transfer coefficient, and it is proportional to the air velocity. When Biot no is less than 0.1 in the case of natural convection, then lumped analysis can be applied.
<u>Further explanations:</u>
Heat is a form of energy.
Heat transfer describes the flow of heat across the boundary of a system due to temperature differences and the subsequent temperature distribution and changes. There are three different ways the heat can transfer: conduction, convection, or radiation.
Heat transfer analysis which utilizes this idealization is known as the lumped system analysis.
The Biot number is a criterion dimensionless quantity used in heat transfer calculations which gives a direct indication of the relative importance of conduction and convection in determining the temperature history of a body being heated or cooled by convection at its surface. In heat transfer analysis, some bodies are observed to behave like a "lump" whose entire body temperature remains essentially uniform at all times during a heat transfer process.
Conduction is the transfer of energy in the form of heat or electricity from one atom to another within an object and conduction of heat occurs when molecules increase in temperature.
Convection is a transfer of heat by the movement of a fluid. Convection occurs within liquids and gases between areas of different temperature.
Answer:
2.59 m
Explanation:
Coordinates of origin = (0, 0)
Coordinates of Point p where the fly reach = (2.3 m, 1.2 m)
Use the distance formula of coordinates to find the distance between the origin and the point P.


d = 2.59 m
Thus, the distance between the origin and the point P is 2.59 m.
Answer:
The x-coordinate of the particle is 24 m.
Explanation:
In order to obtain the x-coordinate of the particle, you have to apply the equations for Two Dimension Motion
Xf=Xo+Voxt+0.5axt²(I)
Yf=Yo+Voyt+0.5ayt² (II)
Where Xo, Yo are the initial positions, Xf and Yf are the final positions, Vox and Voy are the initial velocities, ax and ay are the accerelations in x and y directions, t is the time.
The particle starts from rest from the origin, therefore:
Vox=Voy=0
Xo=Yo=0
Replacing Yf=12, Yo=0 and Voy=0 in (I) and solving for t:
12=0+(0)t+ 0.5(1.0)t²
12=0.5t²
Dividing by 0.5 and extracting thr squareroot both sides:
t=√12/0.5
t=√24 = 2√6
Replacing t=2√6, ax=2.0,Xo=0 and Vox=0 in (I) to obain the x-coordinate:
Xf=0+0t+0.5(2.0)(2√6)²
Xf= 24 m