Answer:
m = 1.99 kg = 2 kg
Explanation:
The moment of inertia of a bicycle rim about it's center is given by the following formula:

where,
I = Moment of Inertia of the Bicycle Rim = 0.21 kg.m²
r = Radius of the Bicycle Rim = Diameter of the Bicycle Rim/2
r = 0.65 m/2 = 0.325 m
m = Mass of the Bicycle Rim = ?
Therefore,

<u>m = 1.99 kg = 2 kg</u>
Answer:
see below
Explanation:
this is because particles in solids are packed very closely together, thus , the particles collide with each other frequently and thus transfer of energy is faster. however, particles in liquid are closely packed but not as close as in solid so the particles do not collide as frequently. thus, transfer of energy slower than in solid. furthermore, the particles in gas are spaced far apart from each other, thus the particles don't collide with each other frequently, thus transfer of energy is very slow in gas.
hope you get it,
please mark
Answer:
d = 1.55 * 10⁻⁶ m
Explanation:
To calculate the distance between the adjacent grooves of the CD, use the formula,
..........(1)
The fringe number, m = 1 since it is a first order maximum
The wavelength of the green laser pointer,
= 532 nm = 532 * 10⁻⁹ m
Distance between the central maximum and the first order maximum = 1.1 m
Distance between the screen and the CD = 3 m
= Angle between the incident light and the diffracted light
From the setup shown in the attachment, it is a right angled triangle in which


Putting all appropriate values into equation (1)

<h2>
The answer got is reasonable.</h2>
Explanation:
We have equation of motion v² = u² + 2as
Initial velocity, u = 300 m/s
Acceleration, a = ?
Final velocity, v = 400 m/s
Displacement,s = 4 km = 4000 m
Substituting
v² = u² + 2as
400² = 300² + 2 x a x 4000
a = 8.75 m/s² = 8.8 m/s²
The acceleration is 8.8 m/s²
The answer got is reasonable.