Answer:
D
Explanation:
The negative feedback is responsible for maintaining equilibrium (stability) in a system as it lessens effects, which is contrary to positive feedback which increases reaction and moves a system further away from equilibrium (stability), It does so by amplifying the effects of a product or event and occurs when something needs to happen quickly. e.g
- Insulin lowers down blood sugar levels, so when the body detects that it has too much sugar, the pancreas is prompted to release insulin and only stops when balance is achieved; hence, negative feedback.
- When there is a tear on the skin, a chemical is released. This chemical causes platelets in the blood to activate, hence they release a chemical which signals more platelets to activate, until the wound is clotted, positive feedback.
Answer:
35.20 m
Explanation:
By the law of conservation of energy we have,



where m= mass of the skier, h= 3.00 m
D= horizontal distance=13.9 m
H= maximum height attained
Also, the horizontal distance covered by the skier is
D=vt


thus, height H in terms of D is given by


H=35.20 m
50 strands is the standard procedure
Answer:
2081.65 m
Explanation:
We'll begin by calculating the time taken for the load to get to the target. This can be obtained as follow:
Height (h) = 3000 m
Acceleration due to gravity (g) = 10 m/s²
Time (t) =?
h = ½gt²
3000 = ½ × 10 × t²
3000 = 5 × t²
Divide both side by 5
t² = 3000 / 5
t² = 600
Take the square root of both side
t = √600
t = 24.49 s
Finally, we shall determine the distance from the target at which the load should be released. This can be obtained as follow:
Horizontal velocity (u) = 85 m/s
Time (t) = 24.49 s
Horizontal distance (s) =?
s = ut
s = 85 × 24.49
s = 2081.65 m
Thus, the load should be released from 2081.65 m.
It can be transferred by I, II, and III
Hope this helps ! :}