Answer:
it Give only one of them a positive or negative charge
Answer: 1010.92 m/s
Explanation:
According to Newton's law of universal gravitation:
(1)
Where:
is the gravitational force between Earth and Moon
is the Gravitational Constant
is the mass of the Earth
is the mass of the Moon
is the distance between the Earth and Moon
Asuming the orbit of the Moon around the Earth is a circular orbit, the Earth exerts a centripetal force on the moon, which is equal to
:
(2)
Where
is the centripetal acceleration given by:
(3)
Being
the orbital velocity of the moon
Making (1)=(2):
(4)
Simplifying:
(5)
Making (5)=(3):
(6)
Finding
:
(7)
(8)
Finally:
Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.
Answer:
108 km
Explanation:
The conversion factor between meters and feet is
1 m = 3.28 ft
So the second altitude, written in feet, can be rewritten in meters as

or in kilometers,

the first altitude in kilometers is

so the difference between the two altitudes is

Answer:
Explanation:
a ) After the attainment of terminal speed , object takes 4.5 s to cover a distance of 2 m
So terminal speed V = 2 / 4.5
= .444 m /s
When it attains terminal speed , acceleration becomes zero
0 = g - B x .444
B = 22.25 s⁻¹
b ) At t = 0 , v = 0
a = g - B v
a = g at t = 0
c ) When v = .15
a = g - 22.25 x .15
= 9.8 - 3.31
= 6.5 m /s²