Answer:
D. 6.00 L
Explanation:
What we have here is an example of Boyle's Law. The equation here is P₁ · V₁ = P₂ · V₂. We know all of the values except for V₂.
60(8) = 80V
<em>Multiply 60 by 8 to get 480.</em>
480 = 80V
<em>Divide both sides by 80.</em>
480/80 = V
6 = V
The final volume for the gas is 6.00 L.
To solve this problem, we use Beer's Law: A= ε.l.c
A is the absorbance- 0,558
<span>ε is</span> the molar absorptivity- is <span>15000 </span><span><span>L⋅mol-1</span><span>cm-1</span></span>
<span>l is </span>the length of the cuvette- 1 cm
<span>c is</span> the molar concentration
Applying the formula,
0,558= 15000 x 1 x c
0,558/15000= c
c= <span>3.72×<span>10⁻⁵ </span> <span>mol⋅L<span>⁻¹</span></span></span>
<span />
Answer:
Suspension
Explanation:
This mixture is a simple suspension.
A suspension is a mixture of small insoluble particles of a solid in a liquid or gas. Here, it is insoluble particles in liquid.
- Suspensions are settle on standing this is why they have to be mixed again.
- The particles do not pass through ordinary filter paper.
- They are usually cloudy and have an opaque color.
- The marinade is simply a suspension.
- It is not a solution because they do not settle on standing.
- Also, colloids do not settle on standing.
Ionic bonds form when a nonmetal and a metal exchange electrons, while covalent bonds form when electrons are shared between two nonmetals. An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions.
Answer:
The enthalpy of the solution is -35.9 kJ/mol
Explanation:
<u>Step 1:</u> Data given
Mass of lithiumchloride = 3.00 grams
Volume of water = 100 mL
Change in temperature = 6.09 °C
<u>Step 2:</u> Calculate mass of water
Mass of water = 1g/mL * 100 mL = 100 grams
<u>Step 3:</u> Calculate heat
q = m*c*ΔT
with m = the mass of water = 100 grams
with c = the heat capacity = 4.184 J/g°C
with ΔT = the chgange in temperature = 6.09 °C
q = 100 grams * 4.184 J/g°C * 6.09 °C
q =2548.1 J
<u>Step 4:</u> Calculate moles lithiumchloride
Moles LiCl = mass LiCl / Molar mass LiCl
Moles LiCl = 3 grams / 42.394 g/mol
Moles LiCl = 0.071 moles
<u>Step 5:</u> Calculate enthalpy of solution
ΔH = 2548.1 J /0.071 moles
ΔH = 35888.7 J/mol = 35.9 kJ/mol (negative because it's exothermic)
The enthalpy of the solution is -35.9 kJ/mol