1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alex Ar [27]
3 years ago
6

The positively charged particles found in the nucleus of an atom are called ______.

Chemistry
1 answer:
Vikentia [17]3 years ago
4 0
The answer is (c) protons
You might be interested in
Consider the reaction Mg(s) + I2 (s) → MgI2 (s) Identify the limiting reagent in each of the reaction mixtures below:
Lapatulllka [165]

Answer:

a) Nor Mg, neither I2 is the limiting reactant.

b) I2 is the limiting reactant

c) <u>Mg is the limiting reactant</u>

<u>d) Mg is the limiting reactant</u>

<u>e) Nor Mg, neither I2 is the limiting reactant.</u>

<u>f) I2 is the limiting reactant</u>

<u>g) Nor Mg, neither I2 is the limiting reactant.</u>

<u>h) I2 is the limiting reactant</u>

<u>i) Mg is the limiting reactant</u>

Explanation:

Step 1: The balanced equation:

Mg(s) + I2(s) → MgI2(s)

For 1 mol of Mg we need 1 mol of I2 to produce 1 mol of MgI2

a. 100 atoms of Mg and 100 molecules of I2

We'll have the following equation:

100 Mg(s) + 100 I2(s) → 100MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

b. 150 atoms of Mg and 100 molecules of I2

We'll have the following equation:

150 Mg(s) + 100 I2(s) → 100 MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 100 Mg atoms. There will remain 50 Mg atoms.

There will be produced 100 MgI2 molecules.

c. 200 atoms of Mg and 300 molecules of I2

We'll have the following equation:

200 Mg(s) + 300 I2(s) →200 MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 200 I2 molecules. There will remain 100 I2 molecules.

There will be produced 200 MgI2 molecules.

d. 0.16 mol Mg and 0.25 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.16 mol of I2. There will remain 0.09 mol of I2.

There will be produced 0.16 mol of MgI2.

e. 0.14 mol Mg and 0.14 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.14 mol of Mg and 0.14 mol of I2. there will be produced 0.14 mol of MgI2

f. 0.12 mol Mg and 0.08 mol I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.08 moles of Mg. There will remain 0.04 moles of Mg.

There will be produced 0.08 moles of MgI2.

g. 6.078 g Mg and 63.455 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 6.078 grams / 24.31 g/mol = 0.250 moles

Number of moles I2 = 63.455 grams/ 253.8 g/mol = 0.250 moles

This is a stoichiometric mixture. <u>Nor Mg, neither I2 is the limiting reactant.</u>

There will be consumed 0.250 mol of Mg and 0.250 mol of I2. there will be produced 0.250 mol of MgI2

h. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 2.00 grams/ 253.8 g/mol = 0.00788 moles

<u>I2 is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.00788 moles of Mg. There will remain 0.03322 moles of Mg.

There will be produced 0.00788 moles of MgI2.

i. 1.00 g Mg and 2.00 g I2

We'll have the following equation:

Mg(s) + I2(s) → MgI2(s)

Number of moles of Mg = 1.00 grams / 24.31 g/mol = 0.0411 moles

Number of moles I2 = 20.00 grams/ 253.8 g/mol = 0.0788 moles

<u>Mg is the limiting reactant</u>, and will be completely consumed. There will be consumed 0.0411 moles of Mg. There will remain 0.0377 moles of I2.

There will be produced 0.0411 moles of MgI2.

4 0
3 years ago
What is the name of the molecule shown below?
Nezavi [6.7K]

Answer:

B) Methanoic Acid

Explanation:

8 0
2 years ago
Complete combustion of 7.40 g of a hydrocarbon produced 22.4 g of CO2 and 11.5 g of H2O. What is the empirical formula for the h
cluponka [151]
<span>C2H5 First, you need to figure out the relative ratios of moles of carbon and hydrogen. You do this by first looking up the atomic weight of carbon, hydrogen, and oxygen. Then you use those atomic weights to calculate the molar masses of H2O and CO2. Carbon = 12.0107 Hydrogen = 1.00794 Oxygen = 15.999 Molar mass of H2O = 2 * 1.00794 + 15.999 = 18.01488 Molar mass of CO2 = 12.0107 + 2 * 15.999 = 44.0087 Now using the calculated molar masses, determine how many moles of each product was generated. You do this by dividing the given mass by the molar mass. moles H2O = 11.5 g / 18.01488 g/mole = 0.638361 moles moles CO2 = 22.4 g / 44.0087 g/mole = 0.50899 moles The number of moles of carbon is the same as the number of moles of CO2 since there's just 1 carbon atom per CO2 molecule. Since there's 2 hydrogen atoms per molecule of H2O, you need to multiply the number of moles of H2O by 2 to get the number of moles of hydrogen. moles C = 0.50899 moles H = 0.638361 * 2 = 1.276722 We can double check our math by multiplying the calculated number of moles of carbon and hydrogen by their respective atomic weights and see if we get the original mass of the hydrocarbon. total mass = 0.50899 * 12.0107 + 1.276722 * 1.00794 = 7.400185 7.400185 is more than close enough to 7.40 given rounding errors, so the double check worked. Now to find the empirical formula we need to find a ratio of small integers that comes close to the ratio of moles of carbon and hydrogen. 0.50899 / 1.276722 = 0.398669 0.398669 is extremely close to 4/10, so let's reduce that ratio by dividing both top and bottom by 2 giving 2/5. Since the number of moles of carbon was on top, that ratio implies that the empirical formula for this unknown hydrocarbon is C2H5</span>
3 0
3 years ago
The speed of a wave on a guitar string is 100 m/s, and the frequency is 1,000 Hz. what is the wavelength of the wave?
Ivenika [448]
v=fw (Assume for this example w is wavelength). w=v/f. w=100/1000= 0.1 m. The wavelength is 0.1 meters
5 0
3 years ago
Which of the statements about elements is true?
Jet001 [13]

1. No two elements have the same kind of atom.

Explanation:

The correct of all statement is that no two elements have the same kind of atoms.

Every element have different atoms.

  • Over a hundred elements have been identified by scientists.
  • Atoms are the smallest particles that takes part in chemical reactions.
  • Elements are distinct substances that cannot be split.
  • Atoms of all elements do not have the same mass and volume. Isotopes are examples.
  • It is true that atoms of all elements have different masses and also different volumes.
  • The volume of an atom is function of the number of electrons it contains.

learn more:

Dalton model of the atom brainly.com/question/1979129

#learnwithBrainly

3 0
3 years ago
Read 2 more answers
Other questions:
  • If litmus paper is dipped in a very acidic and then in a basic what will happen
    14·1 answer
  • Two plastics that are targeted for recycling from household waste are PETE (1) ( plastic soft drink bottles/ peanut butter and s
    6·1 answer
  • Hydrogen bonds are approximately _____% of the bond strength of covalent c-c or c-h bonds.
    7·1 answer
  • Please help me !! This is worth 10 points !
    10·1 answer
  • What happens when an atom has more electrons than can fit in one energy
    9·1 answer
  • A 5.18-g sample of a mixture of MgBr2(s) and sucrose (C12H22O11) is dissolved in water and all the bromide is precipitated as Ag
    13·1 answer
  • During a chemical reaction, the amount of energy (2 points)
    8·1 answer
  • Why is important to not waste water ?
    11·1 answer
  • What is photosynthesis​
    5·2 answers
  • 2.Please study the figures below which illustrate the steps in the chemical reaction of fluoromethane (CH3F) with a hydroxide io
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!