2SO₂ + O₂ = 2SO₃
n(O₂)=1 mol
n(SO₂)=2n(O₂)
n(SO₂)=2 mol
Question: Baking a Cake Without Flour.
Hypothesis: I think that when I remove the flour from the standard cake recipe, I'll end up with a flat but tasty cake.
Procedure: I baked two cakes during my experiment. For my control, I baked a cake following a normal recipe. I used the Double Fudge Cake recipe on page 292 of the Betty Crocker Cookbook. For my experimental cake, I followed the same recipe but left out the flour. I first obtained a 2-quart mixing bowl.
Results: My control cake, which I cooked for 25 minutes, measured 4 cm high. Eight out of ten tasters that I picked at random from the class found it to be an acceptable dessert. After 25 minutes of baking, my experimental cake was 1.5 cm high and all ten tasters refused to eat it because it was burnt to a crisp.
What did I learn?/Conclusion: Since the experimental cake burned, my results did not support my hypothesis. I think that the cake burned because it had less mass, but cooked for the same amount of time. I propose that the baking time be shortened in subsequent trials.
-
I hope this helped :))
Aldol condensation involves the reaction of an acid or base with a carbonyl group producing a nucleophile that attacks another carbonyl compound to yield a β-hydroxyaldehyde or β-hydroxyketone compound.
<h3>What is aldol condensation?</h3>
The aldol condensation is a reaction in organic chemistry in which there is a reaction between an acid or base and a carbonyl group which then serves as the nucleophile that attcks a second carbonyl to yield a β-hydroxyaldehyde or β-hydroxyketone compound.
The aldol condensation may be acid catalysed or base catlysed. The question is incomplete hence the complete mechanimsms can not be decuced.
Learn more about aldol condensation: brainly.com/question/9415260
Answer:
0.297 mol/L
Explanation:
<em>A chemist prepares a solution of potassium dichromate by measuring out 13.1 g of potassium dichromate into a 150 mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's potassium dichromate solution. Be sure your answer has the correct number of significant digits.</em>
<em />
Step 1: Calculate the moles corresponding to 13.1 g of potassium dichromate
The molar mass of potassium dichromate is 294.19 g/mol.
13.1 g × (1 mol/294.19 g) = 0.0445 mol
Step 2: Convert the volume of solution to L
We will use the relationship 1 L = 1000 mL.
150 mL × (1 L/1000 mL) = 0.150 L
Step 3: Calculate the concentration of the solution in mol/L
C = 0.0445 mol/0.150 L = 0.297 mol/L