Answer:
v₁ = 4 [m/s].
Explanation:
This problem can be solved by using the principle of conservation of linear momentum. Where momentum is preserved before and after the missile is fired.

where:
P = linear momentum [kg*m/s]
m = mass [kg]
v = velocity [m/s]

where:
m₁ = mass of the tank = 500 [kg]
v₁ = velocity of the tank after firing the missile [m/s]
m₂ = mass of the missile = 20 [kg]
v₂ = velocity of the missile after firing = 100 [m/s]
![(500*v_{1})=(20*100)\\v_{1}=2000/500\\v_{1}=4[m/s]](https://tex.z-dn.net/?f=%28500%2Av_%7B1%7D%29%3D%2820%2A100%29%5C%5Cv_%7B1%7D%3D2000%2F500%5C%5Cv_%7B1%7D%3D4%5Bm%2Fs%5D)
Answer:
These forces are all equal and cancel each other out. Gravity pushes downward on the ice cream. This can also be called the weight of the ice cream. Buoyant force pushes the ice cream upward
I go with D .
Explanation:
I go with D because neither if the ballons have the same thermal energy.
I don't know what the question is but this is an example of static electricity