<u>Answer:</u>
It is the expression of Charles' Law.
<u>Explanation:</u>
The given expression V1T2 = V2T1 is the formula for the Charles' Law.
A special case of an ideal gas is named as the Charles' Law. This law applies to ideal gases only which are at constant pressure.
According to this law, the volume of a fixed mass of a gas is directly proportional to its temperature and is given by:
V1T2 = V2T1
All oxayacids have cations so no need to name the cation (H+) If name of polyatomic anion ends in -ate change to -ic for acid and if it ends with -ite change to -ous for acid
example:
ion nitrate is called nitric acid
ion nitrate is called nitrous acid
<u>Answer:</u> The heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
<u>Explanation:</u>
Enthalpy change is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as 
The equation used to calculate enthalpy change is of a reaction is:
![\Delta H_{rxn}=\sum [n\times \Delta H_{(product)}]-\sum [n\times \Delta H_{(reactant)}]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28product%29%7D%5D-%5Csum%20%5Bn%5Ctimes%20%5CDelta%20H_%7B%28reactant%29%7D%5D)
For the given chemical reaction:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(1\times \Delta H_{(C_4H_{10})})]-[(1\times \Delta H_{(C_4H_6)})+(2\times \Delta H_{(H_2)})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_%7B10%7D%29%7D%29%5D-%5B%281%5Ctimes%20%5CDelta%20H_%7B%28C_4H_6%29%7D%29%2B%282%5Ctimes%20%5CDelta%20H_%7B%28H_2%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(1\times (-2877.6))]-[(1\times (-2540.2))+(2\times (-285.8))]\\\\\Delta H_{rxn}=234.2J](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%281%5Ctimes%20%28-2877.6%29%29%5D-%5B%281%5Ctimes%20%28-2540.2%29%29%2B%282%5Ctimes%20%28-285.8%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D234.2J)
Hence, the heat of hydrogenation of the reaction is coming out to be 234.2 kJ.
Explanation:
Relation between pH and concentration of hydrogen ions is as follows.
pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
So, it means that an increase in the value of pH will show that there occurs a decrease in concentration of hydrogen ions.
Therefore, the solution becomes basic in nature.
On the other hand, a decrease in the value of pH will show that there occurs an increase in the concentration of hydrogen ions.
Therefore, the solution becomes more acidic in nature.
Hence, if the pH of a solution is decreased from pH 8 to pH 6 it means that the concentration of hydrogen ions has increased in the solution.
Answer:
Volume of acid, Va=250mL; Volume of quinine,Vb=20mL; Molarity of acid, Ma=0.05M.
Molar mass of acid= H2+S+O4= 2+32+(16X4)= 2+32+64=98g
Concentration of acid, Ca= Molar mass of acid/ Ma =98/0.05=1960g/mol
Explanation: To calculate concentration of quinine, Cb is as follow
Va*Ca=Vb*Cb
∴ Cb=Va*Ca/Vb =250*1960/20 =24500g/mol