(a) at the bottom - high density organic compound dissolved in methylene chloride
(b) at the bottom - saturated aqueous sodium chloride
Explanation:
Sodium chloride is dissolved in water while the organic compounds are dissolved in methylene chloride. After mixing the two solutions two layers will form because water (polar molecule) will not mix with the methylene chloride (nonpolar molecule).
The layer with higher density will be at the bottom.
(a) saturated aqueous sodium chloride (d = 1.2 g/mL) - upper layer
high density organic compound dissolved in methylene chloride (d = 1.4 g/mL) - bottom layer
(b) saturated aqueous sodium chloride (d = 1.2 g/mL) - bottom layer
low density organic compound dissolved in methylene chloride (d = 1.1 g/mL) - upper layer
Learn more about:
liquids with different densities
brainly.com/question/5396235
brainly.com/question/9490207
#learnwithBrainly
433.8267 g/mol according to Chemical aid
Answer:
C. 0.20 M Mg ion & 0.40 M Cl ion
Explanation:
MgCl₂ is a ionic salt which is dissociated as this
MgCl₂ → Mg²⁺ + 2Cl⁻
First of all, we have a solution of 200 mL, with [MgCl₂] = 0.6M
Molarity . volume = moles.
0.6 mol/l . 0.2l = 0.12 mol
MgCl₂ → Mg²⁺ + 2Cl⁻
0.12mol 0.12 0.24
This moles are also in 400mL of water, so the new concentration is
[Mg²⁺] = 0.12 m/0.6L = 0.2M
[Cl⁻] = 0.24 m/0.6L = 0.4M
Remember we initially have 200mL and then, we add 400 mL, so we supose aditive volume. (600mL)
Answer:
Explanation:
<u>1) Rate law, at a given temperature:</u>
- Since all the data are obtained at the same temperature, the equilibrium constant is the same.
- Since only reactants A and B participate in the reaction, you assume that the form of the rate law is:
r = K [A]ᵃ [B]ᵇ
<u>2) Use the data from the table</u>
- Since the first and second set of data have the same concentration of the reactant A, you can use them to find the exponent b:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₂ = (1.50)ᵃ (2.50)ᵇ = 2.50 × 10⁻¹ M/s
Divide r₂ by r₁: [ 2.50 / 1.50] ᵇ = 1 ⇒ b = 0
- Use the first and second set of data to find the exponent a:
r₁ = (1.50)ᵃ (1.50)ᵇ = 2.50 × 10⁻¹ M/s
r₃ = (3.00)ᵃ (1.50)ᵇ = 5.00 × 10⁻¹ M/s
Divide r₃ by r₂: [3.00 / 1.50]ᵃ = [5.00 / 2.50]
2ᵃ = 2 ⇒ a = 1
<u>3) Write the rate law</u>
This means, that the rate is independent of reactant B and is of first order respect reactant A.
<u>4) Use any set of data to find K</u>
With the first set of data
- r = K (1.50 M) = 2.50 × 10⁻¹ M/s ⇒ K = 0.250 M/s / 1.50 M = 0.167 s⁻¹
Result: the rate constant is K = 0.167 s⁻¹