Answer:
b. unsaturated
.
Explanation:
Hello there!
In this case, according to the given information, it turns out necessary for us to bear to mind the definition of each type of solution:
- Supersaturated solution: comprises a large amount of solute at a temperature at which it will be able to crystalize upon standing.
- Unsaturated solution: is a solution in which a solvent is able to dissolve any more solute at a given temperature.
- Saturated solution can be defined as a solution in which a solvent is not capable of dissolving any more solute at a given temperature.
In such a way, since 20 grams of the solute are less than the solubility, we infer this is b. unsaturated, as 33.3 grams of solute can be further added to the 100 grams of water.
Regards!
Answer:
The correct answer is 160.37 KJ/mol.
Explanation:
To find the activation energy in the given case, there is a need to use the Arrhenius equation, which is,
k = Ae^-Ea/RT
k1 = Ae^-Ea/RT1 and k2 = Ae^-Ea/RT2
k2/k1 = e^-Ea/R (1/T2-1/T1)
ln(k2/k1) = Ea/R (1/T1-1/T2)
The values of rate constant k1 and k2 are 3.61 * 10^-15 s^-1 and 8.66 * 10^-7 s^-1.
The temperatures T1 and T2 are 298 K and 425 K respectively.
Now by filling the values we get:
ln (8.66*10^-7/3.61*10^-15) = Ea/R (1/298-1/425)
19.29 = Ea/R * 0.001
Ea = 160.37 KJ/mol
The answer i think it is... is Temperature
Hope this helped!
Answer:
The answer to your question is: density = 4 g/cm³
Explanation:
Data
Volume = 100 cm³
Mass = 400 g
Density = ?
Formula
density = mass/volume
substitution
density = 400/100 = 4 g/cm³
1,05+ 0,69 + 1,82 = 3,56g of mixture
%CaCO₃: 1,82/3,56×100% = 0,5112×100% = 51,12%