Answer:
If the ship speed is doubled, then the power developed is 8 times the initial value.
Explanation:
ship power is roughly proportional to the cube of the speed, so
P ∝ v³
If the speed is doubled, then the power developed becomes
P ∝ (2)³ = 8 times
Therefore, if the ship speed is doubled, then the power developed is 8 times the initial value.
Question:
1) The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.
2) The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.
3) The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.
4) The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.
Answer:
The correct option is;
3) The Universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses
Explanation:
With the temperature measurement carried out using the CSIRO radio telescope, Astronomers have been able to determine a temperature difference in the universe from 5.08 Kelvin 7.2 billion light years away to 2.73 Kelvin in the Universe today, which is in support of the Big Bang theory that as the Universe expanded from a state of extreme temperature that cools down as the Universe expands or the cosmos disperses.
Answer:
E. d and O
Explanation:
"Light passing through a single slit forms a diffraction pattern somewhat different from those formed by double slits or diffraction gratings".
According to Huygens’s principle, "for each element of the wavefront in the slit emits wavelets. These are like rays that start out in phase and head in all directions. (Each ray is perpendicular to the wavefront of a wavelet.) Assuming the screen is very far away compared with the size of the slit, rays heading toward a common destination are nearly parallel".
The destructive interference for a single slit is given by:

Where
d is the slit width
is the light's wavelength
is the angle relative to the original direction of the light
m is the order od the minimum
I represent the intensity
When the intensity and the wavelength are incident normally the angular as we can see on the expression above the angular separation just depends of the distance d and the wavelength O.