To calculate the average atomic weight, each exact atomic weight is multiplied by its percent abundance, then, add the results together. If the natural abundance of 63Cu is assigned x, the natural abundance of 65Cu is 1-x (the two abundance always add up to 1). So the solution is: (63)(x)+(65)(1-x) = 63.55, 63x+65-65x=63.55, x=0.725=72.5%. The natural abundance of 63Cu is 72.5%, that of 65Cu is 1-72.5%=27.5%.
In order to determine the mass of a substance given the volume, we require the density. The density of iron is 7.87 grams/cm³
Now,
Density = mass / volume
Mass = density * volume
Mass = 7.87 * 4.6
36.2 grams of iron are present in the cube
Answer:
By increasing the pressure, the molar concentration of N2O4 will increase
Explanation:
We have the equation 2NO2 ⇔ N2O4
This equation is reversible and exotherm. By <u>decreasing the temperature</u>, the reaction will produce more energy, so the reaction will move to the right. But a lower temperature also lowers the rate of the process, so, the temperature is set at a compromise value that allows N2O4 to be made at a reasonable rate with an equilibrium concentration that is not too unfavorable
So <u>increasing the temperature</u> will shift the equilibrium to the left. The equilibrium shifts in the direction that consumes energy.
If we d<u>ecrease the concentration of NO2</u>, the equilibrium will shift to the left, resulting in forming more reactants.
To increase the molar concentration of the product N2O4, we have to <u>increase the pressure</u> of the system.
NO2 takes up more space than N2O4, so increasing the pressure would allow the reactant to collide more form more product.
By increasing the pressure, the molar concentration of N2O4 will increase
The correct answer is B. The shape of a molecule where three pairs of electrons are shared is a trigonal planar. This is characterized by one central atom and three atoms forming an equilateral triangle which is bonded to the central atom.
<span>In each case, the same bond gets broken - the bond between the hydrogen and oxygen in an -OH group. Writing the rest of the molecule as "X"
</span>
The factors to consider
Two of the factors which influence the ionisation of an acid are:
<span>the strength of the bond being broken,the stability of the ions being formed.</span>
In these cases, you seem to be breaking the same oxygen-hydrogen bond each time, and so you might expect the strengths to be similar.