Answer:
its 0.163 g
Explanation:
From the total pressure and the vapour pressure of water we can calculate the partial pressure of O2
PO 2 =P t −P H 2 O
= 760 − 22.4
= 737.6 mmHg
From the ideal gas equation we write.
W= RT/PVM = (0.0821Latm/Kmol)(273+24)K(0.974atm)(0.128L)(32.0g/mol/) =0.163g
First calculate for the molar mass of the given formula unit, CaCO₃. This can be done by adding up the product when the number of atom is multiplied to its individual molar mass as shown below.
molar mass of CaCO₃ = (1 mol Ca)(40 g Ca/mol Ca) + (1 mol C)(12 g of C/1 mol of C) + (3 mols of O)(16 g O/1 mol O) = 100 g/mol of CaCO₃
Then, divide the given amount of substance by the calculated molar mass.
number of moles = (20 g)(1 mol of CaCO₃/100 g)
number of moles = 0.2 moles of CaCO₃
<em>Answer: 0.2 moles</em>
Answer:
minerals
Explanation:
defines a mineral as "a naturally occurring inorganic element or compound having an. orderly internal structure and characteristic chemical composition, crystal form, and physical. properties." Minerals differ from rocks, which are naturally occurring solids composed of one or more minerals.
Answer:
1) volumetric
2) graduated
3) volumetric
Explanation:
A volumetric glassware is a glassware that is marked at a particular point. A typical example of a volumetric glassware is the volumetric flask. A volumetric glassware is capable of measuring only a specific volume of a liquid.
On the other hand, graduated glassware can measure a range of volumes of liquid. However, a volumetric glassware is still required where a high degree of accuracy is important.