An exothermic reaction is a reaction that releases energy.
Answer:
-32 Fahrenheit converts to 237.594 Kelvin
Answer:
<em>a)</em> <em>1.392 x 10^6 g/cm^3</em>
<em>b) 8.69 x 10^7 lb/ft^3</em>
<em></em>
Explanation:
mass of the star m = 2.0 x 10^36 kg
radius of the star (assumed to be spherical) r = 7.0 x 10^5 km = 7.0 x 10^8 m
The density of substance ρ = mass/volume
The volume of the star = volume of a sphere = 
==> V =
= 1.437 x 10^27 m^3
density of the star ρ = (2.0 x 10^36)/(1.437 x 10^27) = 1.392 x 10^9 kg/m^3
in g/cm^3 = (1.392 x 10^9)/1000 = <em>1.392 x 10^6 g/cm^3</em>
in lb/ft^3 = (1.392 x 10^9)/16.018 = <em>8.69 x 10^7 lb/ft^3</em>
Answer:
1. d[H₂O₂]/dt = -6.6 × 10⁻³ mol·L⁻¹s⁻¹; d[H₂O]/dt = 6.6 × 10⁻³ mol·L⁻¹s⁻¹
2. 0.58 mol
Explanation:
1.Given ΔO₂/Δt…
2H₂O₂ ⟶ 2H₂O + O₂
-½d[H₂O₂]/dt = +½d[H₂O]/dt = d[O₂]/dt
d[H₂O₂]/dt = -2d[O₂]/dt = -2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = -6.6 × 10⁻³mol·L⁻¹s⁻¹
d[H₂O]/dt = 2d[O₂]/dt = 2 × 3.3 × 10⁻³ mol·L⁻¹s⁻¹ = 6.6 × 10⁻³mol·L⁻¹s⁻¹
2. Moles of O₂
(a) Initial moles of H₂O₂

(b) Final moles of H₂O₂
The concentration of H₂O₂ has dropped to 0.22 mol·L⁻¹.

(c) Moles of H₂O₂ reacted
Moles reacted = 1.5 mol - 0.33 mol = 1.17 mol
(d) Moles of O₂ formed
