1. 100 C
2. Point B to C is the ices heat capacity
3. During the points D to E the bonds of the water molecules build up enough kinetic energy to break their intermolecular bonds (not intra), which can lead to gas.
4. Between points D and E the energy is being released the energy required is equivalent along the line.
5. Between point E and D the water is converting to water (condensation)
6. Energy is being released 2260 j/g
7. Yes, but only under extreme volumetric pressures
8. D and E or B and C
9. Freezing (the water is also becoming less dense)
10. Melting or if water already, absorbtion of energy
11. released.
The adsorbed energy helps in heat the absorption. In the animation, the purple arrows represent energy that is being absorbed from the water
<h3>What is an animation?</h3>
It is a way of making a movie from many still images. The images are put together one after another, and then played at a fast speed to give the illusion of movement.
Someone who makes animations is called an animator.
Learn more about animation:
brainly.com/question/25109803
The solubility of NaCl in water will not be affected by an increase in pressure.
We know that the density of NaCl(s) in 2.165 g/cm³ at 25 °C and we want to know how will its solubility in water be affected when the pressure is increased.
<h3>What is solubility?</h3>
Solubility is the maximum mass of a solute that can be dissolved in 100 grams of solvent at a determined temperature.
The solubility of a solid, such as NaCl, in a liquid, is mainly affected by the temperature. However, since solids are not compressible, an increase in pressure will not affect its solubility.
On the other hand, the solubility of gases in water will increase with an increase in pressure, as stated by Henry's law.
The solubility of NaCl in water will not be affected by an increase in pressure.
Learn more about solubility here: brainly.com/question/11963573
Answer:
See the answer and explanation below , please.
Explanation:
A conjugate base is defined as that formed after an acid donates its proton.
For each article, a continuation of the conjugate bases (highlighted in bold), for dissociation in water:
a) HF + H20 --> F- + H30+
b) H20+ H20 --> OH- + H30+
C)H2PO3- + H20--> HPO3 2- + H30+
d) HSO4- + H20 --> SO4 2- + H30+
E) HCL02 + H20 --> CLO02 - + H30+