The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
Answer:
1. Density = 1200[kg/m^3]; 2. Volume= 0.005775[m^3], mass= 15.59[kg]
Explanation:
1. We know that the density is defined by the following expression.
![Density = \frac{mass}{volume} \\where:\\mass=90[kg]\\volume=0.075[m^{3} ]\\density=\frac{90}{0.075} \\density=1200[\frac{kg}{m^{3} }]](https://tex.z-dn.net/?f=Density%20%3D%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%5C%5Cwhere%3A%5C%5Cmass%3D90%5Bkg%5D%5C%5Cvolume%3D0.075%5Bm%5E%7B3%7D%20%5D%5C%5Cdensity%3D%5Cfrac%7B90%7D%7B0.075%7D%20%5C%5Cdensity%3D1200%5B%5Cfrac%7Bkg%7D%7Bm%5E%7B3%7D%20%7D%5D)
2. First we need to convert the units to meters.
wide = 35[cm] = 35/100 = 0.35[m]
long = 11 [dm] = 11 decimeters = 11/10 = 1.1[m]
Thick = 15[mm] = 15/1000 = 0.015[m]
Now we can find the density using the expression for the density.
![density= \frac{mass}{volume} \\where:\\volume = wide*long*thick\\volume=0.35*1.1*0.015 = 0.005775[m^3]\\\\mass= density*volume = 2700*0.005775 = 15.59[kg]](https://tex.z-dn.net/?f=density%3D%20%5Cfrac%7Bmass%7D%7Bvolume%7D%20%5C%5Cwhere%3A%5C%5Cvolume%20%3D%20wide%2Along%2Athick%5C%5Cvolume%3D0.35%2A1.1%2A0.015%20%3D%200.005775%5Bm%5E3%5D%5C%5C%5C%5Cmass%3D%20density%2Avolume%20%3D%202700%2A0.005775%20%3D%2015.59%5Bkg%5D)
soy de texas, united states
Answer:
A Thermal energy was converted to kinetic energy
Explanation:
We know that that the range of the ball on the earth

therefore, range of the ball on moon


therefore,

Therefore, the range of ball will be 6 times on the moon than that on earth