To solve the question we will assume that the gas behaves like an ideal gas, that is to say, that there is no interaction between the molecules. Assuming ideal gas we can apply the following equation:

Where,
P is the pressure of the gas
V is the volume of the gas
n is the number of moles
R is a constant
T is the temperature
Now, we have two states, an initial state, and a final state. The conditions for each state will be.
Initial state (1)
P1=975Torr=1.28atm
V1=3.8L
T1=-18°C=255.15K
Final state(2), STP conditions
P2=1atm
T2=273.15K
V2=?
We will assume that the number of moles remains constant, so the nR term of the first equation will be constant. For each state, we will have:

Since nR is the same for both states, we can equate the equations and solve for V2:

We replace the known values:

At STP conditions the gas would occupy 5.2L. First option
Answer:
80.04 gram
Explanation:
mass = moles × relative formula mass
= 0.58×138
= 80.04
Answer:
D)
Explanation:
This seems like a weird question
Water is held together by covalent bonds. The amount of energy required to break these bonds so that water would split into it's respective ions is pretty high. The chances that any one of the molecules floating in 1L of water get enough energy to spontaneously burst into it's ions is slim to none.
So, D) seems like the most likely answer
The question that you asked has already been answered