Answer:
400 g
Explanation:
The computation of the number of grams in the original sample is shown below:
Given that
half-life = 5.26 years
total time of decay = 15.8 years
final amount = 50.0 g
Now based on the above information
number of half-lives past is
= 15.8 ÷ 5.26
= 3 half-lives
Now
3 half-lives = 1 ÷ 8 remains = 50.0 g
So, the number of grams would be
= 50.0 g × 8
= 400 g
Answer:
On average, one acre of new forest can sequester about 2.5 tons of carbon annually. Young trees absorb CO2 at a rate of 13 pounds per tree each year. Trees reach their most productive stage of carbon storage at about 10 years at which point they are estimated to absorb 48 pounds of CO2 per year.
Answer:
D) True. the protostar rotates more quickly.
Explanation:
If the system is isolated, the angular momentum must be retained.
Initial
L₀ = I w₀
Final
=
L₀ = 
I w₀ = 
= I /
w₀
In general, the radius of the cloud decreases significantly to form the star, the moment of inertia must decrease, so the angular velocity must increase
Let's examine the answers
A) False. The opposite happens
B) False. Speed changes
C) False. For this there must be an external force, which does not exist
D) True. You agree with the above
Answer:
Nuclear fusion produces elements that are heavier than helium.
Explanation:
Question:
What two forces are balanced in what we call gravitational equilibrium?
A) the electromagnetic force and gravity
B) outward pressure and the strong force
C) outward pressure and inward gravity
D) the strong force and gravity
E) the strong force and kinetic energy
Answer:
The correct answer is C) Outward Pressure and Inward gravity
Explanation:
Gravitational equilibrium is a balance between the inward pull of gravity and the outward push of internal gas pressure. It also refers to the condition of a star in which the weight of overlying layers at each point is balanced by the total pressure at that point.
As the weight increases in the lower layers of the sun, the pressure also increases to maintain this balance. So you find that the outward push of pressure balances the inward pull of gravity thus creating an equilibrium.
Why is gravitational equilibrium important?
The simple answer is <u>balance. </u> If for instance the sun as a stable star (which has gravitational equilibrium) loses it's balance, it becomes highly unstable and prone to violent outbursts. These outbursts are caused by the very high radiation pressure at the star's upper layers, which blows significant portions of the matter at the "surface" into space during eruptions that may rage for several years. Of course such a condition is adverse to the existence and support of life.
Cheers!