1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ratling [72]
3 years ago
6

A 16 pound weight attached to a spring exhibits simple harmonic motion. Determine the equation of motion if the spring constant

is 8 lb/ft and if the weight is released 6 inches below the equilibrium position with a downward velocity of 1 ft/s.
Physics
1 answer:
yarga [219]3 years ago
8 0

Answer:

T = 2.82π s

x = Acos(0.71t)

Explanation:

This problem can be solved by using the expressions

T = 2\pi \sqrt{\frac{m}{k} }    ( 1 )

x=Acos(\omega t) = Acos(\frac{2\pi }{T}t )   ( 2 )

where T is the period of oscillation of the system, m is the mass of the object attached to the spring, k is the spring constant and x is the position of the object.

By replacing in the expression (1):

T=2\pi \sqrt{\frac{16 lb}{8lb/ft}} = 2.82\pi s

Taking 6 inches as the amplitude of the motion, we have

x=6cos(\frac{2\pi }{2.82\pi }t ) = 6cos(0.71t)

I hope this is useful for you

Regards

You might be interested in
A 3.0 kg box is suspended by a series of ropes as shown below. The tension force in the horizontal rope is -40 N. What is the te
Nitella [24]

Answer:

50 N

Explanation:

Let the force in the horizontal rope be F₁ and the force in the diagonal rope be F₂:

The total force in the horizontal and vertical directions must be zero, since the object is at rest and is not accelerating.

The horizontal component of the forces:

F₁ + F₂ = -40N + F₂ = 0

F₂ = 40N

The vertical component of the forces:

F₁ + F₂ - mg = 0 + F₂ - mg = 0

F₂ = mg

If I assume the gravitational constant g = 10 m/s²:

F₂ = (3 kg) * (10 m/s²) = 30N

Adding the horizontal and vertical components of the force F₂:

F₂ = √((40N)² + (30N)²) = 50N

6 0
3 years ago
How do quantum numbers relate to electrons?<br> please explain?
alukav5142 [94]
Quantum numbers<span> allow us to both simplify and dig deeper into electron configurations. Electron configurations allow us to identify energy level, subshell, and the number of electrons in those locations. If you choose to go a bit further, you can also add in x,y, or z subscripts to describe the exact orbital of those subshells (for example </span><span>2<span>px</span></span>). Simply put, electron configurations are more focused on location of electrons then anything else. 
<span>
Quantum numbers allow us to dig deeper into the electron configurations by allowing us to focus on electrons' quantum nature. This includes such properties as principle energy (size) (n), magnitude of angular momentum (shape) (l), orientation in space (m), and the spinning nature of the electron. In terms of connecting quantum numbers back to electron configurations, n is related to the energy level, l is related to the subshell, m is related to the orbital, and s is due to Pauli Exclusion Principle.</span>
7 0
3 years ago
Consider two points in an electric field. The potential at point 1, V1, is 33 V. The potential at point 2, V2, is 175 V. An elec
Mnenie [13.5K]

Answer:

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

Explanation:

Since the electric potential at point 1 is V₁ = 33 V and the electric potential at point 2 is V₂ = 175 V, when the electron is accelerated from point 1 to point 2, there is a change in electric potential ΔV which is given by ΔV = V₂ - V₁.

Substituting the values of the variables into the equation, we have

ΔV = V₂ - V₁.

ΔV = 175 V - 33 V.

ΔV = 142 V

The change in electric potential energy ΔU = eΔV = e(V₂ - V₁) where e = electron charge = -1.602 × 10⁻¹⁹ C and ΔV = electric potential change from point 1 to point 2 = 142 V.

So, substituting the values of the variables into the equation, we have

ΔU = eΔV

ΔU = eΔV

ΔU = -1.602 × 10⁻¹⁹ C × 142 V

ΔU = -227.484 × 10⁻¹⁹ J

ΔU = -2.27484 × 10⁻²¹ J

ΔU ≅ -2.275 × 10⁻²¹ J

So, the required equation for the electric potential energy change is

ΔU  = e(V₂ - V₁) and its value ΔU = -2.275 × 10⁻²¹ J

5 0
3 years ago
In what way are gravitational and electrical forces similar?
Nadusha1986 [10]

Answer:

D. Both occur between objects independently whether they are in contact  or not.

Explanation:

- The gravitational force is a force that is exerted between two (or more) objects having mass. This force is always attractive and its magnitude is given by

F=G\frac{m_1 m_2}{r^2}

where G is the gravitational constant, m1 and m2 are the two masses, and r is the distance between the two masses.

- The electrical force is a force that is exerted between two (or more) objects having electrical charge. It can be either attractive or repulsive, depending on the sign of the two charges, and its magnitude is given by

F=k\frac{q_1 q_2}{r^2}

where k is the Coulomb's constant, q1 and q2 are the two charges, and r the distance between the two charges.

Looking at both formulas, we see that the two forces are present even when the two objects are not in contact with each other (in fact, r can assume any value in the formula). They are said to be non-contact forces. Therefore, the correct option is

D. Both occur between objects independently whether they are in contact  or not.

6 0
3 years ago
for an ideal monoatomic gas, the internal energy U os due to the kinetic energy and U=3/2RT per mole.show that cv=3/2R per mole
sladkih [1.3K]

Answer:

i. Cv =3R/2

ii. Cp = 5R/2

Explanation:

i. Cv = Molar heat capacity at constant volume

Since the internal energy of the ideal monoatomic gas is U = 3/2RT and Cv = dU/dT

Differentiating U with respect to T, we have

= d(3/2RT)/dT

= 3R/2

ii. Cp - Molar heat capacity at constant pressure

Cp = Cv + R

substituting Cv into the equation, we have

Cp = 3R/2 + R

taking L.C.M

Cp = (3R + 2R)/2

Cp = 5R/2

3 0
3 years ago
Other questions:
  • The path of a meteor passing Earth is affected by its gravitational force and falls to Earth's surface. Another meteor of the sa
    8·2 answers
  • Sound waves move the most slowly through? solids liquids or gases
    10·2 answers
  • Our Sun emits most of its radiation at a wavelength of 550 nm. If a star were 3.50 times hotter than our Sun, it would emit most
    12·1 answer
  • Which part of the manufacturing process involves heating and rolling blocks of steel into flat sheets and bars?
    13·1 answer
  • Why would the time of flight depend on the angle of the launch
    10·1 answer
  • An engine absorbs 1.69 kJ from a hot reservoir at 277°C and expels 1.25 kJ to a cold reservoir at 27°C in each cycle.
    10·1 answer
  • The atom in the diagram has neutral charge. How many protons does it have
    14·1 answer
  • A stone whirled on a string experiences a centripetal acceleration of 10 m/s². If the string were shortened to half its length (
    7·1 answer
  • A plane has a take off speed of 1 point
    15·1 answer
  • 21. Explain why a passenger who is not wearing a safety belt will likely hit the windshield in a head-on collision. please answe
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!