Answer:
Final Temperature = 28.2 oC
Explanation:
Information given;
Mass of Iron = 20.8g
Initial Temperature of Iron = 100C
Mass of water = 55.3g
Initial temperature of water = 25.3 C
The presence of a coffee cup calorimeter hints that there is no heat loss to the surrounding and that the iron and water are at thermal equilibrium.
Thermal equilibrium means that there is no heat transfer going on between the bodies, which simply means that the bodies are at the same temperature.
Hence, both bodies would the same final temperature (T2)
H = M * C * ΔT (For iron)
H = 20.8 * 0.449 * ( 100 - T2)
H = 9.3392 ( 100 - T2)
H = 933.92 - 9.3392T2
H = M * C * ΔT (For water)
H = 55.3 * 4.184 * (T2 - 25.3)
H = 231.3752 (T2 - 25.3)
H = 231.3752T2 - 5853.79
Since they are in thermal equilibrium it means H (Iron) = H (water).
This leads to;
933.92 - 9.3392T2 = 231.3752T2 - 5853.79
231.3752T2 + 9.3392T2 = 5853.79 + 933.92
240.7144 T2 = 6787.71
T2 = 28.2 oC
<span>All of these. All the gases that are mentioned in each set identify with the law of multiple proportions since the all the compounds have oxygen ions in them. Law of multiple proportions is defined as formation of compound with oxide ions after the reaction of an element with oxygen.</span>
Answer:
d i dont now but im sure my answer is d im not good to write english word
The electron configuration
1
s
2
2
s
2
2
p
6
3
s
2
3
p
2
is the element Silicon.
The key to deciphering this is to look at the last bit of information of the electron configuration
3
p
2
.
The '3' informs us that the element is in the 3rd Energy Level or row of the periodic table. The 'p' tells us that the element is found in the p-block which are all of the Groups to the right of the transition metals, columns 13-18. The superscript '2' tells us that the element is found in the 2nd column of the p-block Group 14.