To solve this problem it is necessary to apply the concepts related to the Rotational Force described from the equilibrium and Newton's second law.
When there is equilibrium, the Force generated by the tension is equivalent to the Force of the Weight. However in rotation, the Weight must be equivalent to the Centrifugal Force and the tension, in other words:

Where
Angular velocity is equal to the Period, at this case Earth's period
Radius of the Earth
m = mass
= Force of Tension
Newton's second law
Replacing and re-arrange to find the Tension we have,






Therefore when Sneezy is on the equator he is in a circular orbit with a Force of tension of 503.26N
Distance = Speed × time
Distance = 31m/s × 13 seconds = 403m
Answer:
you a b1tc h
Explanation:
you're not going anywhere in life. mcdonalds hiring $16 an hour where i live.
Taking right movement to be positive means leftward movement is negative.
Hence we have a deceleration of



Using this 'suvat' equation

we can determine the initial velocity



Hence the initial velocity is 13.0 meters per seconds
Answer:
Compression is the answer
Explanation:
got it right