Answer:
a) Weight of the rock out of the water = 16.37 N
b) Buoyancy force = 4.61 N
c) Mass of the water displaced = 0.47 kg
d) Weight of rock under water = 11.76 N
Explanation:
a) Mass of the rock out of the water = Volume x Density
Volume = 470 cm³
Density = 3.55 g/cm³
Mass = 470 x 3.55 = 1668.5 g = 1.6685 kg
Weight of the rock out of the water = 1.6685 x 9.81 = 16.37 N
b) Buoyancy force = Volume x Density of liquid x Acceleration due to gravity.
Volume = 470 cm³
Density of liquid = 1 g/cm³

c) Mass of the water displaced = Volume of body x Density of liquid
Mass of the water displaced = 470 x 1 = 470 g = 0.47 kg
d) Weight of rock under water = Weight of the rock out of the water - Buoyancy force
Weight of rock under water = 16.37 - 4.61 =11.76 N
The amplitude of a wave corresponds to its maximum oscillation of the wave itself.
In our problem, the equation of the wave is
![y(x,t)= (0.750cm)cos(\pi [(0.400cm-1)x+(250s-1)t])](https://tex.z-dn.net/?f=y%28x%2Ct%29%3D%20%280.750cm%29cos%28%5Cpi%20%5B%280.400cm-1%29x%2B%28250s-1%29t%5D%29)
We can see that the maximum value of y(x,t) is reached when the cosine is equal to 1. When this condition occurs,

and therefore this value corresponds to the amplitude of the wave.
Answer:
It is a parallel connection
Explanation:
In parallel connection the
Cell is not easily used up because the cells share the total current generated together with all bulbs.
But a major problem is the bulbs must not be left together undisconnected to avoid exhaustion arising from short fall in the strength of one cell as this bounds to affect others
<span>P = energy/t = 0.0025/1E-8 = 250000 W
I(ave) = P/A = 250000/(pi*0.425E-3^2) = 4.4056732E11 W/m^2
I(peak) = 2I(ave) = 8.8113463E11 W/m^2
Electric field E = sqrt(I(peak)*Z0) = 1.8219499E7 V/m, where
free-space impedance Z0 = sqrt(µ0/e0) = 376.73031 ohms</span>