1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dmitriy555 [2]
3 years ago
13

Sunlight, with an intensity of 667 W / m², strikes a flat collecting surface perpendicularly and is totally absorbed. The area o

f the surface is 9.03 m². What is the force in micro-newtons that acts on the surface due to the sunlight?
Physics
1 answer:
alexandr1967 [171]3 years ago
6 0

Answer:

F = 20.07 μN

Explanation:

given,                                            

intensity of sunlight = 667 W/m²

area of surface =  9.03 m²

speed of light = 3 x 10⁸ m/s

force = ?                                  

we know                                                                

force =intensity \times \dfrac{Area}{speed of light}

force =667 \times \dfrac{9.03}{3\times 10^8}

F = 20.07 x 10⁻⁶ N

F = 20.07 μN

You might be interested in
(NEED HELP PLEASE) A physics student goes to the roof of the school, 24.15 m above the ground, and drops a pumpkin straight down
slavikrds [6]

Answer:

t = 2.2 s

Explanation:

Given that,

Height of the roof, h = 24.15 m

The initial velocity of the pumpkin, u = 0

We need to find the time taken for the pumpkin to hit the ground. Let the time be t. Using second equation of kinematics to find it as follows :

h=ut+\dfrac{1}{2}at^2

Here, u = 0 and a = g

h=\dfrac{1}{2}gt^2\\\\t=\sqrt{\dfrac{2h}{g}} \\\\t=\sqrt{\dfrac{2\times 24.15}{9.8}} \\\\t=2.22\ s

So, it will take 2.22 s for the pumpkin to hit the ground.

7 0
3 years ago
Before an object can react to a force the object must contain what?
Serggg [28]

Energy I believe. If there is no energy given or taken the object will not react.

6 0
3 years ago
If a player through a basketball to the target with an initial velocity of 17 m/s making an angle of 30 degrees with the horizon
Svetllana [295]

Answer:

The final position made with the vertical is 2.77 m.

Explanation:

Given;

initial velocity of the ball, V = 17 m/s

angle of projection, θ = 30⁰

time of motion, t = 1.3 s

The vertical component of the velocity is calculated as;

V_y = Vsin \theta\\\\V_y = 17 \times sin(30)\\\\V_y = 8.5 \ m/s

The final position made with the vertical (Yf) after 1.3 seconds is calculated as;

Y_f = V_yt  - \frac{1}{2}g t^2\\\\Y_f = (8.5 \times 1.3 ) - (\frac{1}{2} \times 9.8 \times 1.3^2)\\\\Y_f = 11.05 \ - \ 8.281\\\\Y_f = 2.77 \ m

Therefore, the final position made with the vertical is 2.77 m.

3 0
2 years ago
suggest an experiment to prove that the rate of evaporation of a liquid depends on its surface area vapour already present in su
gulaghasi [49]
That's two different things it depends on:

-- surface area exposed to the air
AND
-- vapor already present in the surrounding air.

Here's what I have in mind for an experiment to show those two dependencies:

-- a closed box with a wall down the middle, separating it into two closed sections;

-- a little round hole in the east outer wall, another one in the west outer wall,
and another one in the wall between the sections;
So that if you wanted to, you could carefully stick a soda straw straight into one side,
through one section, through the wall, through the other section, and out the other wall.

-- a tiny fan that blows air through a tube into the hole in one outer wall.

<u>Experiment A:</u>

-- Pour 1 ounce of water into a narrow dish, with a small surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
-- Pour 1 ounce of water into a wide dish, with a large surface area.
-- Set the dish in the second section of the box ... the one the air passes through
just before it leaves the box.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
=============================
<span><em>Show that the 1 ounce of water evaporated faster </em>
<em>when it had more surface area.</em></span>
============================================
============================================

<u>Experiment B:</u>

-- Again, pour 1 ounce of water into the wide dish with the large surface area.
-- Again, set the dish in the second half of the box ... the one the air passes
through just before it leaves the box.
-- This time, place another wide dish full of water in the <em>first section </em>of the box,
so that the air has to pass over it before it gets through the wall to the wide dish
in the second section.  Now, the air that's evaporating water from the dish in the
second section already has vapor in it before it does the job.
-- Start the fan.
-- Count the amount of time it takes for the 1 ounce of water to completely evaporate.
==========================================
<em>Show that it took longer to evaporate when the air </em>
<em>blowing over it was already loaded with vapor.</em>
==========================================
6 0
3 years ago
Steam in a heating system flows through tubes whose outer diameter is 5 cm and whose walls are maintained at a temperature of 13
svet-max [94.6K]

Answer:

5945.27 W per meter of tube length.

Explanation:

Let's assume that:

  • Steady operations exist;
  • The heat transfer coefficient (h) is uniform over the entire fin surfaces;
  • Thermal conductivity (k) is constant;
  • Heat transfer by radiation is negligible.

First, let's calculate the heat transfer (Q) that occurs when there's no fin in the tubes. The heat will be transferred by convection, so let's use Newton's law of cooling:

Q = A*h*(Tb - T∞)

A is the area of the section of the tube,

A = π*D*L, where D is the diameter (5 cm = 0.05 m), and L is the length. The question wants the heat by length, thus, L= 1m.

A = π*0.05*1 = 0.1571 m²

Q = 0.1571*40*(130 - 25)

Q = 659.73 W

Now, when the fin is added, the heat will be transferred by the fin by convection, and between the fin and the tube by convection, thus:

Qfin = nf*Afin*h*(Tb - T∞)

Afin = 2π*(r2² - r1²) + 2π*r2*t

r2 is the outer radius of the fin (3 cm = 0.03 m), r1 is the radius difference of the fin and the tube ( 0.03 - 0.025 = 0.005 m), and t is the thickness ( 0.001 m).

Afin = 0.006 m²

Qfin = 0.97*0.006*40*(130 - 25)

Qfin = 24.44 W

The heat transferred at the space between the fin and the tube will be:

Qspace = Aspace*h*(Tb - T∞)

Aspace = π*D*S, where D is the tube diameter and S is the space between then,

Aspace = π*0.05*0.003 = 0.0005

Qspace = 0.0005*40*(130 - 25) = 1.98 W

The total heat is the sum of them multiplied by the total number of fins,

Qtotal = 250*(24.44 + 1.98) = 6605 W

So, the increase in heat is 6605 - 659.73 = 5945.27 W per meter of tube length.

5 0
3 years ago
Other questions:
  • Look at the diagram. Emily needs to complete the circuit. What two points should be connected to complete the circuit and make t
    6·2 answers
  • A squirrel runs at a steady rate of 0.51 m/s in a circular path around a tree. If the squirrel's centripetal acceleration is 0.4
    8·2 answers
  • What unit is electronegativity measured in?
    5·1 answer
  • A runner starts from a rest and speeds up with a constant acceleration . if she has gone a distance of 30 m at the point when sh
    15·2 answers
  • What is the safest way to vent building with backdraft potential
    6·1 answer
  • What is the fundamental frequency of a 0.003 kg steel piano wire of length 1.3 m and under a tension of 2030 N? Answer in units
    9·1 answer
  • If you jump off a 7 m diving platform, how long will it take you to hit the
    6·1 answer
  • Help me Please!!!!!!!
    6·1 answer
  • Blending three primary colors of light
    13·1 answer
  • A projectile is fired at an angle of 53° to the horizontal with a speed of 80. meters per second. What is the vertical component
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!