1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Volgvan
3 years ago
10

A carmaker has designed a car that can reach a maximum acceleration of 12 meters per second the cars mass is 1515 assuming the s

ame engine is used what should the cars mass be if the carmaker wants it to reach an acceleration of 15meters/second

Physics
2 answers:
frosja888 [35]3 years ago
7 0

Answer:1212

Explanation:

Rudiy273 years ago
5 0
The answer is attached. Also, you should know that the unit for acceleration is m/s2 and for velocity it is m/s.

You might be interested in
A steel rope is used to lift a 26 kg slab of concrete from the ground to a height of 20 m. Assume that the rope moves the concre
Ne4ueva [31]

Answer:

5200 Joules

Explanation:

Work Formula:

W = F . D

W = (26.10) . 20

W = 260 . 20

W = 5200 Joules

5 0
3 years ago
Which best explains satellites? the moon is a satellite of the earth, and the earth is a satellite of the sun. mercury and pluto
Basile [38]
<span>the moon is a satellite of the earth, and the earth is a satellite of the sun.
that is the best answer</span>
6 0
3 years ago
Read 2 more answers
A time-dependent but otherwise uniform magnetic field of magnitude B0(t) is confined in a cylindrical region of radius 6.5 cm. I
vodka [1.7K]

Answer:

a = 603.59 m/s^2

Explanation:

from the data given . the rate of change in magnetic field is as follow

\frac{dB}{dt} = 280 G/s = 280 \times 10^{-4} T/s

from the faraday's law of induction , the expression for the induced emf in region of radius r as follow

\epsilon = \frac{d \phi}{dt}

\int E.dl = \frac{d(BA)}{dt}

E(2\pi r)= \pi r^2 \frac{dB}{dt}

E = \frac{r}{2} \frac{dB}{dt}

electric field at point P_1 as follow

E = \frac{r}{2} \frac{dB}{dt}

E = \frac{1.5\times 10^{-2}}{2} 280 \times 10^{-4}

E = 6.3\times 10^{-6} V/m

from newton 2nd law of motion, the acceleration of proton is

F = ma

qE = ma

a = \frac{qE}{m}

a = \frac{1.6 \times 10^{-19} (6.3\times 10^{-6})}{1.67\times 10^{-27}}

a = 603.59 m/s^2

5 0
3 years ago
A 2.7-kg block is released from rest and allowed to slide down a frictionless surface and into a spring. The far end of the spri
exis [7]

a) The speed of the block at a height of 0.25 m is 2.38 m/s

b) The compression of the spring is 0.25 m

c) The final height of the block is 0.54 m

Explanation:

a)

We can solve the problem by using the law of conservation of energy. In fact, the total mechanical energy (sum of kinetic+gravitational potential energy) must be conserved in absence of friction. So we can write:

U_i +K_i = U_f + K_f

where

U_i is the initial potential energy, at the top

K_i is the initial kinetic energy, at the top

U_f is the final potential energy, at halfway

K_f is the final kinetic energy, at halfway

The equation can be rewritten as

mgh_i + \frac{1}{2}mu^2 = mgh_f + \frac{1}{2}mv^2

where:

m = 2.7 kg is the mass of the block

g=9.8 m/s^2 is the acceleration of gravity

h_i = 0.54 is the initial height

u = 0 is the initial speed

h_f = 0.25 m is the final height of the block

v is the final speed when the block is at a height of 0.25 m

Solving for v,

v=\sqrt{u^2+2g(h_i-h_f)}=\sqrt{0+2(9.8)(0.54-0.25)}=2.38 m/s

b)

The total mechanical energy of the block can be calculated from the initial conditions, and it is

E=K_i + U_i = 0 + mgh_i = (2.7)(9.8)(0.54)=14.3 J

At the bottom of the ramp, the gravitational potential energy has become zero (because the final heigth is zero), and all the energy has been converted into kinetic energy. However, then the block compresses the spring, and the maximum compression of the spring occurs when the block stops: at that moment, all the energy of the block has been converted into elastic potential energy of the spring. So we can write

E=E_e = \frac{1}{2}kx^2

where

k = 453 N/m is the spring constant

x is the compression of the spring

And solving for x, we find

x=\sqrt{\frac{2E}{k}}=\sqrt{\frac{2(14.3)}{453}}=0.25 m

c)

If there is no friction acting on the block, we can apply again the law of conservation of energy. This time, the initial energy is the elastic potential energy stored in the spring:

E=E_e = 14.3 J

while the final energy is the energy at the point of maximum height, where all the energy has been converted into gravitational potetial energy:

E=U_f = mg h_f

where h_f is the maximum height reached. Solving for this quantity, we find

h_f = \frac{E}{mg}=\frac{14.3}{(2.7)(9.8)}=0.54 m

which is the initial height: this is correct, because the total mechanical energy is conserved, so the block must return to its initial position.

Learn more about kinetic and potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

brainly.com/question/6536722

#LearnwithBrainly

5 0
3 years ago
single goose sounds a loud warning when an intruder enters the farmyard. Some distance from the goose, you measure the sound lev
Goryan [66]

Answer:

The sound level of the 26 geese is  Z_{26}= 96.15 dB

Explanation:

From the question we are told that

    The  sound level is Z_1 =  81.0 \ dB

     The number of geese is N = 26

Generally the intensity level of sound is mathematically represented as

        The intensity of sound level in dB  for one  goose is mathematically represented as

                       Z_1 = 10 log [\frac{I}{I_O} ]

Where I_o is the  threshold level of intensity with value  I_o = 1*10^{-12} \  W/m^2

            I is the intensity for one goose in W/m^2

For 26 geese the intensity would be  

          I_{26} = 26 * I

   Then  the intensity of 26 geese in dB is  

              Z_{26} = 10 log[\frac{26 I }{I_o} ]

               Z_{26} = 10 log (\ \ 26 *  [\frac{ I }{I_o} ]\ \ )

               Z_{26} = 10 log (\ \ 26  \ \ ) *   (\ \  10 log [\frac{ I }{I_o} ]\ \ )

 From the law of logarithm we have that

              Z_{26} = 10 log 26 +  10 log [\frac{I}{I_0} ]

                    = 14.15 + 82

                    Z_{26}= 96.15 dB

               

               

           

4 0
3 years ago
Other questions:
  • Before the cells in a person's body can use the food that the person eats, the food must be A. chemically broken down into sugar
    9·2 answers
  • Blank can cause magma within Earth to blank resulting in the formation of blank rock
    7·1 answer
  • A person runs at a speed of 4 meters per second. How far will the person travel in 40 seconds?
    10·1 answer
  • What is the acceleration of a full bottle of water dropped fron a desk​
    7·1 answer
  • Which are strong bases? Check all that apply.<br> HCI<br> NaOH<br> NH3<br> H2CO3<br> ΠΗΝΟΣ<br> OKOH
    15·1 answer
  • Which of these statements about family relationships is true on Colonel Lloyd’s plantation?
    6·2 answers
  • A battleship simultaneously fires two shells toward two identical enemy ships. One shell hits ship A, which is close by, and the
    13·1 answer
  • Need help with physics! Please provide explanation.
    12·1 answer
  • Astronauts on the first trip to Mars take along a pendulumthat has a period on earth of 1.50 {\rm s}. The period on Mars turns o
    12·1 answer
  • Which statement is true about the circuit diagram below?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!