Answer:
A. 0.199 J
B. 0.0663 C
C = 0.0221 F
D. 12.68 ohms
Explanation:
From the question:
time duration, t = 0.28 seconds
Average power, P = 0.71 W
Average voltage, V = 3 V
A) Energy is given as:
E = P * t
=> E = 0.71 * 0.28 = 0.199 J
B) Electrical energy is also given as:
E = qV
where q = charge
=> q = E / V
∴ q = 0.199 / 3 = 0.0663 C
C) Capacitance is given as charge over voltage:
C = q / V
=> C = 0.0663 / 3 = 0.0221 F
D) Electrical power, P, can also be given as:
P = 
where R = resistance
=> R = 
R = 
Go with the last one because you need potential energy for kinetic energy
<h3>
Answer:</h3>
35 meters
<h3>
Explanation:</h3>
<u>Data given;</u>
- Velocity of an object = 5 m/s
- Time taken = 7 s
We are required to calculate how far the object traveled.
Velocity = Displacement ÷ time
Displacement = Velocity × time
= 5 m/s × 7 s
= 35 m
Therefore; the object traveled 35 meters
Answer:
C
Explanation:
velocity = displacement (m) / change of time (s)
velocity = (400 + 300) / (100 + 400)
velocity = 1.4 m/s
Answer:
d = 0.38 m
Explanation:
As we know that the person due to the airbag action, comes to a complete stop, in 36 msec or less, and during this time, is decelerated at a constant rate of 60 g, we can find the initial velocity (when airbag starts to work), as follows:
vf = v₀ -a*t
If vf = 0, we can solve for v₀:
v₀ = a*t = 60*9.8 m/s²*36*10⁻³s = 21.2 m/s
With the values of v₀, a and t, we can find Δx, applying any kinematic equation that relates all of some of these parameters with the displacement.
Just for simplicity, we can use the following equation:

where vf=0, v₀ =21.2 m/s and a= -588 m/s².
Solving for d:

⇒ d = 0.38 m