<span>Pitch is sometimes defined as the fundamental frequency of a sound wave (i.e. generally, the lowest frequency in a given sound wave). For most practical purposes, this is fine, and pitch and frequency can be thought of as equivalent. On the other hand, for most practical purposes, amplitude can be thought of as volume.However, technically, pitch (and volume) are human perceptions. Thus, our perception of pitch and volume are not solely based on frequency and amplitude respectively, but are based on a combination of both (and even other factors). Frequency overwhelming dictates perceived pitch, but amplitude also does have some small, small effect on our pitch perception, especially when it is very large. For example, a very loud sound can have a different <span>perceived </span>pitch than you would predict from its frequency alone.That all being said, usually these effects are negligible, and pitch can be thought of as equivalent to fundamental frequency.
</span>
I believe the ratio is 1:2
- increasing the concentration of N₂
- increasing the concentration of O₂
- decreasing the concentration of NO
- increasing the temperature
:)
In one mole of C7H18 there are 18 moles of H (the number folowing the H)*
>> the ratio is 1:18
In 5.2 moles of C7H18 there are x moles of H
>> the ratio is 5.2:x
Cross multiply the two ratios
1x = 18×5.2
x = 93.6 moles of H
>> In 5.2 moles of C7H18 there are 93.6 moles of H
* This isnt a rule that you can always use.
However to find the mole of a certain element in a certain molucle all you have to do is count how many moles of the element are present in the molecule.
>> example1 >> H2O ;
2 H and 1 O
>> example2 >> CH3COOH ; [you add up all the moles of the same element]
(1+1) 2 C , (3+1) 4 H and (1+1) 2 O
>> example3 >> Mg(OH)2 ; [you multiply whetever is in parenthesis by the number after it 2] 1 Mg , (1×2) 2 O and (1×2) 2 H