13.5g H2O = 13.5/(2+16) = 0.75 mol H2O
Since for every O2 you can form 2 H2O, 0.75/2 = 0.375 mol of O2 will be needed to form 0.75 mol of H2O.
Converting from moles to molecules:
0.375 mol * 6.022 * 10^23 = 2.26 * 10 ^23 molecules
Answer:
9.39 × 10²² molecules
Explanation:
We can find the moles of gases (n) using the ideal gas equation.
P . V = n . R . T
where,
P is the pressure (standard pressure = 1 atm)
V is the volume
R is the ideal gas constant
T is the absolute temperature (standard temperature = 273.15 K)

There are 6.02 × 10²³ molecules in 1 mol (Avogadro's number). Then,

Answer:
0.574moles
Explanation:
Using the general gas equation;
PV = nRT
Where;
P = pressure (atm)
V = volume (Litres)
n = number of moles (mol)
R = gas law constant (0.0821 Latm/molK)
T = temperature (Kelvin)
According to the information provided in the question;
- Volume (V) = 12400mL = 12400/1000 = 12.4L
- Pressure (P) = 890mmHg = 890/760 = 1.17atm
- Temperature (T) = 35°C = 35 + 273 = 308K
Hence, using PV = nRT
n = PV/RT
n = 1.17 × 12.4 ÷ 0.0821 × 308
n = 14.508 ÷ 25.287
n = 0.574moles
Therefore, the number of moles of argon gas in the cylinder is 0.574moles
Non of the above because protons and neutrons don’t mix with each one there
Ok but you have to give me a cookie