When the specific heat capacity of the water is 4.18 J/g.°C so, we are going to use this formula to get the heat for cooling three phases changes from steam to liquid and from liquid to ice (solid) :
when Q = M*C*ΔT
Q is the heat in J
and M is the mass in gram = 1 mol H2O * 18 g/mol(molar mass) = 18 g
C is the specific heat J/g.°C
ΔT is the change in temperature
Q = Mw *[ ( Csteam * ΔTsteam)+(Cw*ΔTw) + (Cice * ΔT ice)]
= 18 g * [(2.01 * (155-100°C)) + (4.18 * (100-0°C)) + (2.09 * (0 - 55 °C))]
∴Q = 7444.8 J
and when we know that the heat of fusion for water = 334J/g
and heat of vaporization for water = 2260J/g
∴Q for the two phases changes = M * (2260+334)
= 18 * (2260+334)
= 46692 J
∴ Q total = 7444.8 + 46692 = 54136.8 J
Answer:
B
Explanation:
<em>Both plain and plateau have flat surfaces. However, a plain is located in a low-lying area while a plateau is located on an elevated area. In essence, a plateau can be viewed as an elevated plain or a plain that is bordered by cliffs.</em>
The correct option is B.
Answer: a,b
Explanation: because a scientific theory is something that been thought of and tested multiple times.
Answer:
See explanation
Explanation:
The molecular equation shows all the compounds involved in the reaction.
The molecular equation is as follows;
2NaF(aq) + Pb(NO3)2(aq) -------> PbF2(s) + 2NaNO3(aq)
The complete ionic equation shows all the ions involved in the reaction
The complete ionic equation;
2Na^+(aq) + 2F^-(aq) + Pb^2+(aq) + 2NO3^-(aq) -------->PbF(s) + 2Na^+(aq) +2NO3^-(aq)
The net Ionic equation shows the ions that actually participated in the reaction
The net ionic equation is;
2F^-(aq) + Pb^2+(aq)--------> PbF(s)
Answer:
=> 2.8554 g/mL
Explanation:
To determine the formula to use in solving such a problem, you have to consider what you have been given.
We have;
mass (m) = 16.59 g
Volume (v) = 5.81 mL
From our question, we are to determine the density (rho) of the rock.
The formula:

Substitute the values into the formula:

= 2.8554 g/mL
Therefore, the density (rho) of the rock is 2.8554 g/mL.