A food web is a system of interlocking and interdependent food chains.
A food chain is a hierarchical series of organisms each dependent on the next as a source of food.
Basically, the difference of the two is that a food web contains multiple different species in the same level that eat the animal below it's status. A food chain is one after the other.
A solution with a higher concentration of hydroxide ions than hydrogen ions is basic solution.
This solution formed by Base dissolved in water and release hydroxide ions.
The PH of the solution is greater than 7
Kilauea volcano in Hawaii emits 200-300 tons of sulfur dioxide into the atmosphere each day. This is an example of
- the impact of natural processes on the earth's environment.
- air pollution from a natural source.
- the magnitude of the chemistry associated with the environment.
Kilauea volcano in Hawaii emits noxious compounds of sulfur dioxide and other harmful pollutants as a result of a reaction with atmospheric water vapors and oxygen.
This reaction results in acid rain and volcanic smog which pollutes the air.
Over the years, the volcano has become a potential threat to health as harmful oxides are accelerating respiratory problems and acid rain destroys crops, and also harms water supplies.
If you need to learn more about the Kilauea volcano click here:
brainly.com/question/22843284
#SPJ4
Cause their are both have difference s
Answer:
The correct answer is option D.
Explanation:
Rate of the reaction is a change in the concentration of any one of the reactant or product per unit time.

Rate of the reaction:
![R=-\frac{1}{1}\times \frac{d[NO_2]}{dt}=-\frac{1}{1}\times \frac{d[CO]}{dt}](https://tex.z-dn.net/?f=R%3D-%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D%3D-%5Cfrac%7B1%7D%7B1%7D%5Ctimes%20%5Cfrac%7Bd%5BCO%5D%7D%7Bdt%7D)
Rate of decrease in nitrogen dioxide concentration is equal to the rate of decrease in carbon monoxide.
Given rate expression of the reaction:
![R = k[NO2]^2[CO]](https://tex.z-dn.net/?f=R%20%3D%20k%5BNO2%5D%5E2%5BCO%5D)
Rate of the reaction on doubling concentration of nitrogen dioxide and carbon monoxide : R'
![R'=k(2\times [NO_2])^2(2\times [CO])=8\times k[NO2]^2[CO]=8R](https://tex.z-dn.net/?f=R%27%3Dk%282%5Ctimes%20%5BNO_2%5D%29%5E2%282%5Ctimes%20%5BCO%5D%29%3D8%5Ctimes%20k%5BNO2%5D%5E2%5BCO%5D%3D8R)
Doubling the concentrations of nitrogen dioxide and carbon monoxide simultaneously will increase the rate of the reaction by a factor of eight.
Hence, none of the given statements are true.