The temperature on the Earth would increase.
The temperature of the stratosphere would decrease.
Answer:
Orbital period, T = 1.00074 years
Explanation:
It is given that,
Orbital radius of a solar system planet, 
The orbital period of the planet can be calculated using third law of Kepler's. It is as follows :

M is the mass of the sun

T = 31559467.6761 s
T = 1.00074 years
So, a solar-system planet that has an orbital radius of 4 AU would have an orbital period of about 1.00074 years.
[I researched for you, since I am not in that particular level to know that knowledge yet. I assure this is accurate info :)]
The answer is A, red.
"Remember, the color you see is light REFLECTING off the surface of that object. If all colors are absorbed in to the surface EXCEPT red, red must be reflected, and you'll see red." - Yahoo User @Chap
Answer:
Explanation:
The volume of a sphere is:
V = 4/3 * π * a^3
The volume charge density would then be:
p = Q/V
p = 3*Q/(4 * π * a^3)
If the charge density depends on the radius:
p = f(r) = k * r
I integrate the charge density in spherical coordinates. The charge density integrated in the whole volume is equal to total charge.





Since p = k*r
Q = p*π^2*r^3 / 2
Then:
p(r) = 2*Q / (π^2*r^3)