Answer:
a) 
b) 
d) 
d) 
Explanation:
From the question we are told that:
Moles of N2 
Atmospheric pressure 
Temperature 

Initial heat 
a)
Generally the equation for change in temperature is mathematically given by

Where




b)
Generally the equation for ideal gas is mathematically given by

For v double


Therefore



Total Work-done 



c)
Generally the equation for amount of heat added is mathematically given by



d)
Generally the equation for change in internal energy of the gas is mathematically given by



<span>If the human body were a car, glucose would be the gasoline.
Glucose gives humans energy, we basically run on glucose, among other things, the same way a car would run on gas.
</span>
Answer: option d. all of the above.
Explanation:
A mineral is an element or a inorganic compound that existes in nature as solid cristals; usually combined with other minerals in ores.
Some examples of minerals, among many, are titania, wich is TiO2, zirconia, which is ZrO2, silica, which is SiO2, gold, Au, silver, Ag.
As you see the definition and examples given meet the whole features included in the stament: a. the have a chemical formula, b they occur naturally, and c.have a characteristic internal structure (that is the way how the atoms are arranged in the specifi cristal).
The molarity of solution made by dissolving 15.20g of i2 in 1.33 mol of diethyl ether (CH3CH2)2O is =0.6M
calculation
molarity =moles of solute/ Kg of the solvent
mole of the solute (i2) = mass /molar mass
the molar mass of i2 = 126.9 x2 = 253.8 g/mol
moles is therefore= 15.2 g/253.8 g/mol = 0.06 moles
calculate the Kg of solvent (CH3CH2)2O
mass = moles x molar mass
molar mass of (CH3CH2)2O= 74 g/mol
mass is therefore = 1.33 moles x 74 g/mol = 98.42 grams
in Kg = 98.42 /1000 =0.09842 Kg
molarity is therefore = 0.06/0.09842 = 0.6 M
Increased density decreases the speed of sound in a medium. While increased density can mean increased rigidity, or stiffness, it is not always the case. Greater density can be due to each molecule or atom having more momentum, and being slower to respond to the vibration of its neighbor.