Answer:
Binding Energy = 2.24 eV
Explanation:
First, we need to find the energy of the photon of light:
E = hc/λ
where,
E = Energy of Photon = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ J.s
c = speed of light = 3 x 10⁸ m/s
λ = wavelength of light = 400 nm = 4 x 10⁻⁷ m
Therefore,
E = (6.626 x 10⁻³⁴ J.s)(3 x 10⁸ m/s)/(4 x 10⁻⁷ m)
E = (4.97 x 10⁻¹⁹ J)(1 eV/1.6 x 10⁻¹⁹ J)
E = 3.1 eV
Now, from Einstein's Photoelectric Equation:
E = Binding Energy + Kinetic Energy
Binding Energy = E - Kinetic Energy
Binding Energy = 3.1 eV - 0.86 eV
<u>Binding Energy = 2.24 eV</u>
Solar cells are made out of silicon wafers. These are made out of the element silicon, a hard and brittle crystalline solid that is the second most abundant element in the Earth's crust after oxygen. If you're at the beach and see shiny black specks in the sand, that's silicon.
Hope this helps!
Please give brainliest!
Answer:
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Explanation:
Given;
mass of the object, m = 2 kg
weigh of the object, W = 20 N
tension on the rope, T = 12 N
The acceleration of the object is calculated by applying Newton's second law of motion as follows;
T = F + W
T = ma + W
ma = T - W
(the negative sign indicates deceleration of the object)
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Answer:
Paying for employees seminars and workshops related to their careers
Explanation:
To motivate personal development among employees, several things can be done. Among them, giving employees chance to present their own solutions to problems, exposing the employees to several global challenges and how to handle them, paying for employees seminars and workshops related to their own careers for professional development among other things.
Answer:
Waves can be measured using wavelength and frequency. ... The distance from one crest to the next is called a wavelength (λ). The number of complete wavelengths in a given unit of time is called frequency (f). As a wavelength increases in size, its frequency and energy (E) decrease.