Explanation:
The ball, for example, will feel gravity pulling it downward and the ground pushing it upward in the direction it is rolling. (Add this if the ball is rolling on the floor.) Friction is the force that causes the ball to slow down because it acts in the opposite direction that it is moving.
If This Answer Helped You Please Mark Me As Brainliest.
1 inch = 2.54 centimeters
All we need to do is multiply.
68.5 * 2.54 = 173.99cm
Best of Luck!
<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>1</u>
- Initial velocity=u=0m/s
- Final velocity=v=10m/s
- Time=10s=t




<u>P</u><u>e</u><u>r</u><u>s</u><u>o</u><u>n</u><u>-</u><u>2</u>
- initial velocity=0m/s=u
- Final velocity=v=0.25m/s
- Time=t=2s



Person-1 is accelerating faster.
Answer:
Explanation:
Initial speed, v = 10 x 10^3 m/s
Mass of the earth, M = 6 x 10^24 kg
Radius of the earth, R = 6.4 x 10^6 m
Maximum from the surface of earth, h = ?
Let m = Mass of the projectile
Solution:
Potential energy at maximum height = ( Potential + Kinetic energy ) at the surface



=
=



Answer:
20.96 h
Explanation:
The perimeter of the track is 2*pi*r = 20pi miles
In 10 hours, car B would have moved 20miles. So, when Car A leaves from point X, car B is 20pi - 20 miles from point X counter-clockwise and car A.
From here, we can express the distance of A from X like this:
xa = 3t
And the distance of B would be:
xb = 20pi - 20 - 2t
The time t where they would passed each other and put 12 miles between them would be the one where xa - xb is equal to 12:
xa - xb = 12
3t - (20pi - 20 - 2t) = 12
5t = 20 pi - 8
t = (20pi - 8)/5 = 10.96 h
Remember to add this value to the 10 hours car B had already been racing:
t = 20.96h