The quantity that is calculated from the product of the force and the distance traveled due to the force is called work. It has SI units of Joules (J) which is equivalent to Newton-meter (N-m). It is the energy that happens when an object is being moved by an external force.
if there were no invention of machines then life would have been more difficult and simple works could be hard to do. Even now we are using our phones, sitting in a AC room interacting to eachother from different places. without the invention of machines simple things like transportation would have been difficult. There would be horses and donkey for the transportation. There would be no electricity,no internet, no transportation, not even c computers or mobile etc. The market for business will be smaller, the knowledge and news about world would be less.
so the problem would have been bigger than we can imagine. But one thing is that nature could survive lot more compared to what we have done till now by destroying nature.
Well, there you have a very important principle wrapped up in that question.
There's actually no such thing as a real, actual amount of potential energy.
There's only potential <em><u>relative to some place</u></em>. It's the work you have to do
to lift the object from that reference place to wherever it is now. It's also
the kinetic energy the object would have if it fell down to the reference place
from where it is now.
Here's the formula for potential energy: PE = (mass) x (gravity) x (<em><u>height</u></em><u>)</u> .
So naturally, when you use that formula, you need to decide "height above what ?"
If you're reading a book while you're flying in a passenger jet, the book's PE is
(M x G x 0 meters) relative to your lap, (M x G x 1 meter) relative to the floor of the
plane, (M x G x 10,000 meters) relative to the ground, and maybe (M x G x 25,000 meters)
relative to the bottom of the ocean.
Let's say that gravity is 9.8 m/s² .
Then a 4kg block sitting on the floor has (39.2 x 0 meters) PE relative to the floor
it's sitting on, also (39.2 x 3 meters) relative to the floor that's one floor downstairs,
also (39.2 x 30 meters) relative to 10 floors downstairs, and if it's on the top floor of
the Amoco/Aon Center in Chicago, maybe (39.2 x 345 meters) relative to the floor
in the coffee shop that's off the lobby on the ground floor.
Answer:
3400 m
Explanation:
Both lightning and thunder happen at the same time but one is faster than the other. The distance traveled by a sound can be calculated from its speed such that;
speed = distance/time, hence, distance = speed x time.
<em>For a thunder with 340 m/s speed and 10 seconds away from lightning, the distance between the thunder and the lightning can be calculated as</em>;
distance = 340 m/s x 10 s = 3400 m
Communication circuit <em>(D)</em> is becoming more common in residential electrical design and construction.
LAN Ethernet cables, outlets, and even hubs and bridges, are being built into the walls of new homes, along with the usual electrical outlet wiring, to give the owner the networking infrastructure and internet access that everybody needs now ... without stringing a mess of cables on the floor and through doors all over the house.