The conservation of the momentum allows to find the result of how the astronaut can return to the spacecraft is:
- Throwing the thruster away from the ship.
The momentum is defined as the product of the mass and the velocity of the body, for isolated systems the momentum is conserved. If we define the system as consisting of the astronaut and the evo propellant, this system is isolated and the internal forces become zero. Let's find the moment in two moments.
Initial instant. Astronaut and thrust together.
p₀ = 0
Final moment. The astronaut now the thruster in the opposite direction of the ship.
= m v + M v '
where m is propellant mass and M the astronaut mass.
As the moment is preserved.
0 = m v + M v ’
v ’=
We can see that the astronaut's speed is in the opposite direction to the propeller, that is, in the direction of the ship.
The magnitude of the velocity is given by the relationship between the masses.
In conclusion, using the conservation of the momentun we can find the result of how the astronaut can return to the ship is:
- Throwing the thruster away from the ship.
Learn more here: brainly.com/question/14798485
Answer: 5.8 m/s squared
Explanation: just got that question lol
A) no H30+ ions or OH- ions.
Answer:
The technique in which people use machines to learn how to control their bodies is known as D, Biofeedback.
Explanation:
Biofeedback is a variety of different machines that help people learn how to control their bodies depending on their specific needs, varying from things like scalp sensors, electrocardiographs, electromyographs and more.
Answer: Search Results
Featured snippet from the web
Answer: Surface waves can have characteristics of both longitudinal and transverse waves in the following way; The motion of the surface waves is up and down which is perpendicular to the direction of the wave. This is similar to the motion of transverse waves whereas the the motion of longitudinal.
Explanation: