Answer:
Work out = 28.27 kJ/kg
Explanation:
For R-134a, from the saturated tables at 800 kPa, we get
= 171.82 kJ/kg
Therefore, at saturation pressure 140 kPa, saturation temperature is
= -18.77°C = 254.23 K
At saturation pressure 800 kPa, the saturation temperature is
= 31.31°C = 304.31 K
Now heat rejected will be same as enthalpy during vaporization since heat is rejected from saturated vapour state to saturated liquid state.
Thus, = = 171.82 kJ/kg
We know COP of heat pump
COP =
=
= 6.076
Therefore, Work out put, W =
= 171.82 / 6.076
= 28.27 kJ/kg
Answer:
Resistivity ρ=1.12 x 10^-4 Ωm
Explanation:
ρ= RA/l, where R is resistance, A is cross sectional area and l is length
A=πr^2
Note Current is given R is proportion to temperature and inversely proportional to Current R=(20+273)/14*10^-2 =2000Ω
⇒ρ=R*πr^2/l all length in metre.
Answer:
Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater ...
they absorb sunlight and turn it into glucose I think.
First, we convert kcal to joules:
1 kcal = 4.184 kJ
475 kcal = 1987.4 kJ
Now, calculating the change in internal energy:
ΔU = Q + W; where Q is the heat supplied to the system and W is the work done on the system.
ΔU = -500 + 1987.4
ΔU = 1487.4 kJ