Answer:
D. 15 m/s downward
Explanation:
v = at + v₀
v = (-9.8 m/s²) (1.5 s) + (0 m/s)
v = -14.7 m/s
Rounded to two significant figures, the answer is D, 15 m/s downward.
Answer:
Snell's Law states
Ni sin i = Nr sin r
Judging from the question the source of the ray is in the water (directed up)
or NI = 1 / sin 49 Ni = 1.325 deg the critical angle
From inside the pond:
Nr = 1.325 * sin 45 / 1 = 94 deg
So refraction can occur outside the pond and you do not have total internal refection.
<u>Answer:</u>
<em>The correct equation for measuring the average microscopic weight for 3 isotopes is multiply the rate of abundance by each weight and add them.</em>
<u>Explanation:</u>
To calculate the average microscopic mass of element using weights and relative abundance we have to follow the following steps.
- Take the correct weight of each isotope (that will be in decimal form)
- Multiply the weight of each isotope by its abundance
- Add each of the results together.
<em>This gives the required average microscopic weight of the three isotopes.</em>
Answer:
B. a piece of paper being torn
Explanation:
A chemical change is one that cannot be reversed. This means the original properties of the substance or object cannot be restored.
If you cook a raw egg, it would turn into a boiled egg (or a poached egg, however it is being cooked). The reaction is irreversible, so you cannot turn the cooked egg back into a raw egg - it is basically impossible to 'uncook' an already cooked egg.
When you toast a piece of bread, it turns into toast. You can't 'untoast' it back into bread. The chemical changes have already occurred and cannot be undone.
If you tear a piece of paper, it is still paper. You are only ripping it, not changing anything about it. You could simply tape the torn bit back to the original bit, or glue it - either way, it is still paper and nothing has occurred to drastically change the physical state of it.
Therefore, B is not a chemical change.
The time constant determines how long it takes for the capacitor to charge.
To find the answer, we have to know more about the time constant of the capacitor.
<h3>What is time constant?</h3>
- The time it takes for a capacitor to discharge 36.8% of its charge in a discharging circuit or charge up to 63.2% of its maximum capacity in a charging circuit, given that it has no initial charge, is the time constant of a resistor-capacitor series combination.
- The circuit's reaction to a step-up (or constant) voltage input is likewise determined by the time constant.
- As a result, the time constant determines the circuit's cutoff frequency.
Thus, we can conclude that, the time constant determines how long it takes for the capacitor to charge.
Learn more about the time constant here:
brainly.com/question/17050299
#SPJ4