Answer:
Part a)

Part b)

Explanation:
Part a)
as the mass of the suspension system is given as

also we have

so now for force balance we have



Part b)
Now we know that amplitude decreases by 63% in each cycle
so after one cycle the amplitude will become 37% of initial amplitude
so it is given as

also we know




here t = time period of one oscillation
so it is



now damping constant is


Question:
A spaceship enters the solar system moving toward the Sun at a constant speed relative to the Sun. By its own clock, the time elapsed between the time it crosses the orbit of Jupiter and the time it crosses the orbit of Mars is 35.0 minutes
How fast is the spaceship traveling towards the Sun? The radius of the orbit of Jupiter is 43.2 light-minutes, and that of the orbit of Mars is 12.6 light-minutes.
Answer:
S = 5.508 × 10¹¹m
V = 2.62 × 10⁸ m/s
Explanation:
The radius of the orbit of Jupiter, Rj is 43.2 light-minutes
radius of the orbit of Mars, Rm is 12.6 light-minutes
Distance travelled S = (Rj - Rm)
= 43.2 - 12.6 = 30.6 light- minutes
= 30.6 × (3 ×10⁸m/s) × 60 s
= 5.508 × 10¹¹m
time = 35mins = (35 × 60 secs)
= 2100 secs
speed = distance/time
V = 5.508 × 10¹¹m / 2100 s
V = 2.62 × 10⁸ m/s
Answer:
friction
Explanation:
Her brakes will squeak and possibly slide or skid on concrete due to her brakes.
BUT it really depends on the condition of the wheels. Now it matters on the surface as well. Has the road been eroded? what has happened with her brakes? and what texture are the wheels? can seismic waves travel through them?