During this time, the total mechanical energy of the object remains constant.
Answer: Option C
<u>Explanation:</u>
The sum total of potential energy and the kinetic energy presented in the system is called mechanical energy. The total mechanical energy in the system, which represents the combined potential and kinetic energies, remains constant as long as the only force work at conservative forces, and mechanical energy is maintained on this principle.
For example, a gravity box in which we throw the ball straights up, and then leave the hand with a specific amounts of kinetic energy. In the first half of the track, there is no kinetic energy, but it has potential energy similar to kinetic energy that it had when that left our hand. When we catch that again, it has the same kinetic energy as when that left our hand. That is why gravity belongs to the category of conservative forces.
Answer:
the frequency of the oscillation is 1.5 Hz
Explanation:
Given;
mass of the spring, m = 1500 kg
extention of the spring, x = 5 mm = 5 x 10⁻³ m
mass of the driver = 68 kg
The weight of the driver is calculated as;
F = mg
F = 68 x 9.8 = 666.4 N
The spring constant, k, is calculated as;
k = F/m
k = (666.4 N) / (5 x 10⁻³ m)
k = 133,280 N/m
The angular speed of the spring is calculated;

The frequency of the oscillation is calculated as;
ω = 2πf
f = ω / 2π
f = (9.426) / (2π)
f = 1.5 Hz
Therefore, the frequency of the oscillation is 1.5 Hz
Answer:
t = 0.196 s
Explanation:
The speed of a pulse is determined by the characteristics of the medium, its density and its resistance to stress, as long as these remain the speed will be constant for which we can use the kinetic expressions of the uniform movement
v = x / t
t = x / v
calculate
t = 2/102
t = 0.196 s
Answer:
350.72 m/s
Explanation:
Formula for velocity of wave is;
v = fλ
Where;
v is speed
f is frequency
λ is wavelength
We are given;
f = 512 Hz
λ = 0.685 m
Thus;
v = 512 × 0.685
v = 350.72 m/s
Answer:
Time always is on X axis.