1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
krok68 [10]
3 years ago
12

Determine the location of the center of mass of a "L" whose thin vertical and horizontal members have the same length L and the

same mass M. Use the formal definition to find the x and y coordinates, and check your result by doing the calculation with respect to two different origins, one in the lower left corner at the intersection of the horizontal and vertical members and one at the top of the vertical member.
(a) Origin at the lower left

x = ?

y = ?

(b) Origin at the top of the vertical member

x = ?

y = ?
Physics
1 answer:
Vladimir79 [104]3 years ago
6 0

Answer:

a)  x_{cm} = L / 2 , y_{cm}= L/2, b) x_{cm} = L / 2 , y_{cm}= L/2

Explanation:

The center of mass of a body is the point where all external forces are applied, it is defined by

      x_{cm} = 1 / M ∑  x_{i} m_{i} = 1 /M ∫ x dm

      y_{cm} = 1 / M ∑ y_{i}  m_{i} = 1 / M ∫ y dm

where M is the total body mass

Let's calculate the center of mass of our L-shaped body, as formed by two rods one on the x axis and the other on the y axis

a) let's start with the reference zero at the left end of the horizontal rod

let's use the concept of linear density

    λ = M / L = dm / dl

since the rod is on the x axis

     dl = dx

    dm = λ dx

let's calculate

      x_{cm} = M ∫ x λ dx = λ / M ∫ x dx

      x_{cm} = λ / M x² / 2

we evaluate between the lower integration limits x = 0 and upper x = L

      x_{cm} = λ / M (L² / 2 - 0)

  we introduce the value of the density that is cosntnate

     x_{cm} = (M / L) L² / 2M

     x_{cm} = L / 2

We repeat the calculation for verilla verilla

     λ = M / L = dm / dy

     y_{cm} = 1 / M ∫ y λ dy

     y_{cm} = λ M y² / 2

     y_{cm} = M/L  1/M (L² - 0)

     y_{cm}= L/2

b) we repeat the calculation for the origin the reference system is top of the vertical rod

     horizontal rod

        x_{cm} = 1 / M ∫λ x dx = λ/M   x² / 2

we evaluate between the lower limits x = 0 and the upper limit x = -L

      x_{cm} = λ / M [(-L)²/2 - 0] = (M / L) L² / 2M

      x_{cm} = L / 2

vertical rod

      y_{cm} = 1 / M ∫y dm

      y_{cm} = λ / M ∫y dy

      y_{cm} = λ / M y2 / 2

we evaluate between the integration limits x = 0 and higher x = -L

      y_{cm} = (M / L) 1 / M ((-L)²/2 -0)

      y_{cm} = L / 2

You might be interested in
Question number 8 <br> Plz help
Dennis_Churaev [7]
To me, that sounds like the "Law of Conservation of Energy".
5 0
3 years ago
Which of the following scenarios would be optimal for obtaining a date from radioactive decay using these isotopes: 87Rb, 147Sm,
REY [17]

Answer:

a) 238U, 40K and 87Rb, b)   235U and to a lesser extent 40K , c)  he 235U,

d) possibility is 14C , e)this period would be ideal for 14C , f) 14C should be used since it is the one with the least average life time, even though the measurements must be very careful

Explanation:

One of the applications of radioactive decay is the dating of different systems.

To do this, the quantity of radioactive material in a meter is determined and with the average life time, the time of the sample is found.

Let's write the half-life times of the given materials

87Rb T ½ = 4.75 1010 years

147Sm T ½ = 1.06 1011 years

235U = 7,038 108 years

238U = 4.47 109 years

40K = 1,248 109 years

14C = 5,568 103 years

we already have the half-life of the different elements given

a) meteors. As these decomposed in the formation of the solar system, their life time is around 3 109 to 5 109 years, so it is necessary to look for elements that have a life time of this order, among the candidates we have 238U, 40K and 87Rb if these elements were at the moment of the formation of these meteors, there must still be rations in them, instead elements 14C already completely adequate

b) rock. The formation period is 4.20-108 years, therefore one of the most promising elements is 235U and to a lesser extent 40K since it is more abundant in rocks. The other elements with higher life times have not decayed and therefore will not give a true value and the 14C is completely decayed

c) volcanic ash. Formation time 6107 years, the only element that has the possibility of having a count is the 235U, the others have a life time so long that they have not decayed and the 14C is complete, unbent

d) scarp of an earthquake formation time 5 101 years, The only one that has any possibility is 14C even when it has declined very little, all the others, you have time to long that has not decayed

e) INCA excavation. The time of this civilization is about 10000 to 500 years (104 to 5 102 years), we see that this period would be ideal for 14C since it has some period of cementation, the others have not decayed

f) Tree in Blepharitis. 14C should be used since it is the one with the least average life time, even though the measurements must be very careful because of a period of disintegration. We have such a long time that they have not decayed

8 0
3 years ago
_____ are formed where bumps from two surfaces come into contact ?
Murrr4er [49]

Answer:

the answer would be microwelds.

3 0
3 years ago
Is it true or false that air pollution only occurs as a result of human activity
gregori [183]
Hi alexander it is very true air pollution is only caused by human activity

8 0
3 years ago
Read 2 more answers
What are the only elements that exist in nature as isolated atoms
agasfer [191]

Answer:

The only such elements are the Noble Gases (He, Ne, Ar, Kr, Xe, Rn)

(that is helium, neon, argon, krypton, xenon and radon)

Term: Monoatomic

Explanation:

6 0
3 years ago
Other questions:
  • What is the frequency of radio waves with wavelength of 20m?
    15·2 answers
  • Click on the reset button, and stack one 50kg. crate on top of the other, so that the total mass is 100kg. The Friction should b
    7·1 answer
  • A vector has a magnitude of 46.0 m and points in a direction 20.0° below the positive x-axis. A second vector, , has a magnitude
    15·1 answer
  • Why collaboration in science is critical to success in the scientific community
    15·1 answer
  • um ima em forma de barra atravessa uma espira retangular, como mostra a imagem. Sabendo que esse e um caso em que o fluxo magnet
    6·1 answer
  • True or false? The difference between the state of matter (solid, liquid &amp; gas) is their energy &amp; bond
    7·1 answer
  • Who's Madame Marie curie?​
    11·1 answer
  • I need the answers ASAP.
    5·1 answer
  • If it takes 726 watts of power to move a mass 36 meters in 14 seconds, then what is the magnitude of the object’s mass?
    5·1 answer
  • If one stand of DNA reads as AATTCCGGATCG, what would the opposite strand bases be?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!