The current will decrease as the resistance has now increased, meaning less current will be 'let through' the resistor. (assuming it's in series, there's no image)
Answer:
44100 N
Explanation:
Each wall will have dimension of 4 m x 1.5 m
Whole force will act on central point of wall situated at a depth of 1.5 /2 = .75m
pressure at CM = h d g , h = .75 , d ( density of water = 10³ )
pressure at CM = .75 x 10³ x 9.8
= 7350 N / m²
Total force on each wall
= pressure x area
= 7350 x 4 x 1.5
= 44100 N Ans
b ) If h = 1.5 x 2 = 3
Pressure = hdg
1.5 x 10³ x 9.8
= 14700 N / m²
Force
= pressure x area
14700 x 3 x 4
= 176400 N
Which is 4 times 44100 N
So force will quadruple.
It is so because both area and height have become twice.
Total internal reflection complete reflection of a ray of light within a medium such as water or glass from the surrounding surfaces back into the medium. The phenomenon occurs if the angle of incidence is greater than a certain limiting angle, called the critical angle.
The LARGEST group into which an organism is classified?<span>Kingdoms
So your answer would be </span><span>Kingdoms
Hope this help :)</span>
Answer: A.
As a diver rises, the pressure on their body decreases which allows the volume of the gas to decrease.
Explanation:
The problem is that a diver, experiences an increased pressure of water compresses nitrogen and more of it dissolves into the body. Just as there is a natural nitrogen saturation point at the surface, there are saturation points under water. Those depend on the depth, the type of body tissue involved, and also how long a diver is exposed to the extra pressure. The deeper a diver go, the more nitrogen the body absorbs.
The problem is getting rid of the nitrogen once you ascend again. As the pressure diminishes, nitrogen starts dissolving out of the tissues of the diver's body, a process called "off-gassing." That results in tiny nitrogen bubbles that then get carried to the lungs and breathed out. However, if there is too much nitrogen and/or it is released too quickly, small bubbles can combine to form larger bubbles, and those can do damage to the body, anything from minor discomforts all the way to major problems and even death.