Answer:
The time he can wait to pull the cord is 41.3 s
Explanation:
The equation for the height of the skydiver at a time "t" is as follows:
y = y0 + v0 · t + 1/2 · g · t²
Where:
y = height at time "t".
y0 = initial height.
v0 = initial velocity.
t = time.
g = acceleration due to gravity (-9.8 m/s² considering the upward direction as positive).
First, let´s calculate how much time will it take for the skydiver to hit the ground if he doesn´t activate the parachute.
When he reaches the ground, the height will be 0 (placing the origin of the frame of reference on the ground). Then:
y = y0 + v0 · t + 1/2 · g · t²
0 m = 15000 m + 0 m/s · t - 1/2 · 9.8 m/s² · t²
0 m = 15000 m - 4.9 m/s² · t²
-15000 m / -4.9 m/s² = t²
t = 55.3 s
Then, if it takes 4.0 s for the parachute to be fully deployed and the parachute has to be fully deployed 10.0 s before reaching the ground, the skydiver has to pull the cord 14.0 s before reaching the ground. Then, the time he can wait before pulling the cord is (55.3 s - 14.0 s) 41.3 s.
A cup of tea/coffee transfers heat via conduction, convection and radiation.
Conduction:
- Heat transfer from a coffee to the spoon is in direct contact
- Inner part of the tea cup against hot liquid will transfer heat to the outer part and saucer.
Convection:
Movement of molecules within the coffee. Hot molecules of the tea at the middle of the drink will be eventually make their way to the outer part of the drink near the tea cup, where they will loose their heat.
Radiation:
Thermal radiation is the loss of heat from a solid object in to atmosphere via the release of electromagnetic radiation. So hot outer edge of the teacup loss the energy to its surroundings via thermal radiation.
Answer:
It is called force of friction
Explanation:
The force of friction is a force that acts between two objects whose surfaces are in contact with each other.
Consider the typical case of an object sliding along a certain surface. There are two types of frictions:
- Static friction: this is the force of friction that acts when the object is not in motion yet. If you push the object forward with a force F, the object will not move immediately, but it will "oppose" to this motion with a force of static friction exactly equal to the push applied:

However, this force of static friction has a maximum value, which is given by

where
is the coefficient of static friction
N is the normal reaction exerted by the surface on the object
So, when
becomes greater than
, the static friction is no longer able to balance the push applied, and the object will start sliding forward.
- Kinetic friction: this is the force of friction that acts when the object is already in motion. Its magnitude is given by

where
is the coefficient of kinetic friction, and its value is generally smaller than
. The direction of this force is also opposite to the direction of motion of the object.
Answer - corona, chromosphere, photosphere
Answer:
The gravity arrow for each body rotates, always pointing toward the other body. Both arrows grow longer when the bodies come closer to one another and shorter when they move farther apart. This change shows that the gravitational force is stronger the closer together the bodies are.
Explanation: