The formula for half-life is:

Where A is the amount of iodine-131 initially and after 40 days, t is time, h is half-life of the isotope. Let's plug in our values to the equation:

Therefore, the patient has 0.625 grams of iodine-131 after 40 days.
In air, you'd call it air resistance, pilots call it drag. In water, some call it
water resistance, or just plain drag.
Whatever it's called, it's the friction between the object and the fluid, plus
the force needed to push the fluid out of the way to let the object get through.
Answer:
When the elevator is accelerating downward, the person feels lighter due to the downward normal force being less than the person's weight.
Explanation:
A person riding in an elevator subjected to a series of unbalanced forces depending on the direction the elevator is travelling.
Two forces are acting on the person; the force of gravity and the upward normal force from the elevator.
When the elevator is going upwards with acceleration a, the person feels heavier than his normal weight, due to the upward normal force being greater than the person's weight. N = mg + ma
When the elevator is moving downwards with acceleration a, the person feels lighter due to the downward normal force being less than the person's weight. N = mg - ma
However, when the elevator is moving up or down at constant velocity ie. acceleration a = 0, the person experience a normal force equal to weight. N = mg
When the elevator is moving downwards with acceleration a = g, the person experiences weightlessness. N = (mg - mg) = 0
The direction of its displacement wil be
c.northeast
In fact, the dog walks north for 10 meters and east for another 10 meters. The path of the dog can be represented with two vectors, A pointing north (of magnitude 10 meters) and B pointing east (of magnitude 10 meters). The direction of the resultant vector (due to east) will be given by


and the direction will be north-east.
Answer:

Explanation:
for the unit vector, we need to divide the given vector by its norm, because it should be in the SAME direction as the original vector, but of magnitude "1".
We notice that the norm of the given vector is:

Then, the unit vector becomes:
