If Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
<h3>
What is base dissociation constant?
</h3>
The base dissociation constant (Kb) is defined as the measurement of the ions which base can dissociate or dissolve in the aqueous solution. The greater the value of base dissociation constant greater will be its basicity an strength.
The dissociation reaction of hydrogen cyanide can be given as
HCN --- (H+) + (CN-)
Given,
The value of Ka for HCN is 2.8× 10^(-9)
The correlation between base dissociation constant and acid dissociation constant is
Kw = Ka × Kb
Kw = 10^(-14)
Substituting values of Ka and Kw,
Kb = 10^(-14) /{2.8×10^(-9) }
= 3.5× 10^(-6)
Thus, we find that if Ka for HBrO is 2. 8×10^−9 at 25°C, then the value of Kb for BrO− at 25°C is 3.5× 10^(-6).
DISCLAIMER: The above question have mistake. The correct question is given as
Question:
Given that Ka for HBrO is 2. 8×10^−9 at 25°C. What is the value of Kb for BrO− at 25°C?
learn more about base dissociation constant:
brainly.com/question/9234362
#SPJ4
Answer:
15.69 dozen
Explanation:
Mass of penny = 5 g
Dozens of penny =..?
Next, we shall convert 5 g to gross. This can be obtained as follow:
3824 g = 1000 gross
Therefore,
5 g = 5 g × 1000 gross / 3824 g
5 g = 1.3075 gross
Thus, 5 g is equivalent to 1.3075 gross.
Finally, we convert 1.3075 gross to dozen. This can be obtained as follow:
1 gross = 12 dozen
Therefore,
1.3075 gross = 1.3075 gross × 12 dozen / 1 gross
1.3075 gross = 15.69 dozen
Thus, 5 g of penny is equivalent to 15.69 dozen
Answer is: CH4 and NaCI hope this helps you
Answer:
Hydrogen and Chlorine
Explanation:
They are both an example in univalent atoms, because of their nature to form only one single bond.
I wasn't able to find another example, hope it helped! :)