<span>Answer:
Enthalpy is delta-H-
We need to look at the molecule and determine which bonds are broken adn which bonds are formed.
Bonds that are broken are H-H (from the H2 molecule) and the C=O from acetone.
their energies add up like this: 436 kJ + 745 kJ = 1181 kJ
looking at the bonds formed, these are C-O, O-H, and C-H. these add up to 1229 kJ
solving for delta H by taking the sum of the broken bonds and subtracting the sum of the formed bonds, like so:
1181 - 1229 = -48 kJ</span>
Answer:
The partial pressure of CO is 5.54x10⁻⁴⁹atm. You shouldn't worry because it is very low pressure
Explanation:
First, the balanced reaction is:
CO + 1/2O₂ → CO₂
The energies of formation are:
ΔG(CO)=-137.168kJ/mol
ΔG(O₂)=0
ΔG(CO₂)=-394.359kJ/mol
The energy of the reaction is:

The expression for calculate the partial pressure of CO is:

Answer:
13.93849 millimeters/second
Explanation:
<h3>
Answer:</h3>
3.01 × 10²⁵ molecules H₂O
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
50.0 mol H₂O
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
<u />
= 3.011 × 10²⁵ molecules H₂O
<u>Step 4: Check</u>
<em>We are given 3 sig figs. Follow sig fig rules and round.</em>
3.011 × 10²⁵ molecules H₂O ≈ 3.01 × 10²⁵ molecules H₂O
Answer:
The structures are shown in the figure.
Explanation:
The primary hydrogens are those which are attached to primary carbon.
Primary carbons are the carbons which are attached to only one carbon.
Primary carbons is bonded to three hydrogens.
In order to draw such structure we will draw structures which will have carbon with three hydrogens or no hydrogens (quaternary)
The structures are shown in the figure with clear marking.