The reason that some of the elements of period three and beyond are steady in spite of not sticking to the octet rule is due to the fact of possessing the tendency of forming large size, and a tendency of making more than four bonds. For example, sulfur, it belongs to period 3 and is big enough to hold six fluorine atoms as can be seen in the molecule SF₆, while the second period of an element like nitrogen may not be big to comprise 6 fluorine atoms.
The existence of unoccupied d orbitals are accessible for bonding for period 3 elements and beyond, the size plays a prime function than the tendency to produce more bonds. Hence, the suggestion of the second friend is correct.
Answer:
The pH of a solution of 0.00278 M of HClO₄ is 2.56
Explanation:
pH is a measure of acidity or alkalinity that indicates the amount of hydrogen ions present in a solution or substance and is calculated as:
pH= - log [H⁺]= - log [H₃O⁺]
On the other hand
, a Strong Acid is that acid that in an aqueous solution dissociates completely. In other words, a strong acid completely dissociates into hydrogen ions and anions in solution.
HClO₄ is a strong acid, so in aqueous solution it will be totally dissociated. Then, the concentration of protons is equal to the initial concentration of acid and the pH will be calculated:
pH= - log 0.00278
pH= 2.56
<u><em>The pH of a solution of 0.00278 M of HClO₄ is 2.56</em></u>
Answer:
carbon
Explanation:
because it is an allotrope of carbon
K, ca, sc is the right answer. Take a look at table S of your chemistry reference table.
Today, natural sciences<span> are more </span>commonly divided<span> into life </span>sciences<span>, such as botany and zoology; and physical </span>sciences<span>, which include physics, chemistry, geology, astronomy and materials </span>science<span>.</span>