Answer:
Yes
Explanation:
A supercritical fluid has good properties for both liquid and as for extraction properties, the advantages then include:
- The fact that it has a lower viscosity than liquid CO2 allowing it to move through and around coffee beans more thoroughly with creating back pressure
- Its density is comparable to that of liquid CO2 meaning there is much CO2 per litre as there is liquid form making it more efficient
- It has a higher diffusivity than liquid CO2 which aids with penetration of the coffee beans on a molecular level
This experiment would not work with tea leaves because they also contain caffeine
Answer:
The mass fraction of ferric oxide in the original sample :
Explanation:
Mass of the mixture = 3.110 g
Mass of 
Mass of 
After heating the mixture it allowed to react with hydrogen gas in which all the ferric oxide reacted to form metallic iron and water vapors where as aluminum oxide did not react.

Mass of mixture left after all the ferric oxide has reacted = 2.387 g
Mass of mixture left after all the ferric oxide has reacted = y

The mass fraction of ferric oxide in the original sample :

Answer:

Explanation:
Hello!
In this case, we can divide the problem in two steps:
1. Dilution to 278 mL: here, the initial concentration and volume are 1.20 M and 52.0 mL respectively, and a final volume of 278 mL, it means that the moles remain the same so we can write:

So we solve for C2:

2. Now, since 111 mL of water is added, we compute the final volume, V3:

So, the final concentration of the 139 mL portion is:

Best regards!
Explanation:
To delineate the the nature of the bonds that would be formed between the two elements, let us first write the electronic configuration of the two species;
Be = 2, 2
F = 2, 7
Beryllium is a metal with two valence electrons whereas fluorine is a halogen with seven valence electrons.
When Be loses two electrons it becomes isoelectronic with He;
Be → Be²⁺ + 2e⁻
Also, when fluorine gains an electron, it becomes isoelectronic with Ne;
F + e⁻ → F⁻
This loss and gain of electrons between the two elements creates an electrostatic attraction them and they enter into an electrovalent bond.
Hence;
Be²⁺ + 2F⁻ → BeF₂